The huge amount of electrical power of many countries is consumed in lighting the streets. However, vehicles pass with very low rate in specific periods of time and parts of the streets are not occupied by vehicles ov...The huge amount of electrical power of many countries is consumed in lighting the streets. However, vehicles pass with very low rate in specific periods of time and parts of the streets are not occupied by vehicles over time. In this paper, we propose a system that automatically switches off the light for the parts of the streets having no vehicles and turns on the light for these parts once there are some vehicles that are going to come. Logically, this system may save a large amount of the electrical power. In addition, it may increase the lifetime of the lamps and reduce the pollutions. This system automatically controls and monitors the light of the streets. It can light only the parts that have vehicles and help on the maintenance of the lighting equipments. Vehicular Ad-Hoc Networks (VANET) make it possible to propose such system. VANET enables the possibility to know the presence of vehicles, their locations, their directions and their speeds in real time. These quantities are what are needed to develop this system. An advantage of using VANET is that there is no need to use specific network and equipments to design the system, but VANET infrastructure will be used. This decreases the cost and speed up the deployment of such system. This paper focuses on the proposal of different possible architectures of this system. Results show that the saved energy may reach up to 65% and an increase of the lifetime of the lamps of 53%.展开更多
An introduction is made to the composition, design method and engineering application of a remote real time monitoring system of power quality in substations based on internet. With virtual instrument and network tec...An introduction is made to the composition, design method and engineering application of a remote real time monitoring system of power quality in substations based on internet. With virtual instrument and network technique adopted, this system is characterized by good real time property, high reliability, plentiful functions, and so on. It also can be used to monitor the load of a substation, such as electric locomotives.展开更多
This paper presents an overview about the new Brazilian Power Quality Standard and provides a low cost device PQ meter, developed and implemented to assist the national campaign to assess the Brazilian power quality i...This paper presents an overview about the new Brazilian Power Quality Standard and provides a low cost device PQ meter, developed and implemented to assist the national campaign to assess the Brazilian power quality indices, unknown until now. This work contributes with the search of a low cost devices PQ meter for a cost sensitive market, and introduces the new Brazilian Power Quality Standard to the international community.展开更多
The visualization techniques were explored for power quality monitoring.And remote visualization solutions were proposed for highspeed rail power quality monitoring.Taking the Beijing-Shanghai highspeed rail power mon...The visualization techniques were explored for power quality monitoring.And remote visualization solutions were proposed for highspeed rail power quality monitoring.Taking the Beijing-Shanghai highspeed rail power monitoring as a study case,a remote visualization client,based on our proposed solutions,was developed for high-speed rail power quality monitoring to efficiently support power quality data analysis of the electricity business.The solutions collected data from monitoring stations deployed along the high-speed rail route and visualized the data set with a variety of visualization technologies to alert the specific stations of catastrophic events.The proposed solutions have been proved to be effective in supporting decision-making for the railway power scheduling and providing diagnosis information for quickly spotting any possible runtime failure in operation.展开更多
The Ghana Research Reactor-1 (GHARR-1) is a 34 kW low enriched uranium (LEU) Miniature Neutron Source Reactor (MNSR), tank-in-pool type and cooled by natural circulation under atmospheric pressure operating conditions...The Ghana Research Reactor-1 (GHARR-1) is a 34 kW low enriched uranium (LEU) Miniature Neutron Source Reactor (MNSR), tank-in-pool type and cooled by natural circulation under atmospheric pressure operating conditions. GHARR-1 is owned by Ghana Atomic Energy Commission (GAEC) and operated by National Nuclear Research Institute (NNRI), one of the institutes of GAEC. GHARR-1 is housed by Nuclear Reactors Research Centre (NRRC), one of the Centres of NNRI. Management/Administration, Radiation protection, Reactor operation and maintenance, Reactor utilization and Physical protection are the various systems/units that integrate to manage the activities of operation and utilization of GHARR-1 in addition to the quality assurance and quality control management system of the research reactor facility. The GHARR-1 which is currently in operation follows a robust maintenance culture adopted by the management system and this has made it possible to keep the reactor in operation with minimal interruption. The management system activities adopted at the Centre to ensure safety of the workers, public and the research reactor facility include authorization of the operation of the reactor for any experiments/modifications;providing material and financial resources for maintaining the research reactor facility;following standard procedures while carrying out Neutron Activation Analysis;participation in IAEA proficiency test;irradiation sites/positions characterization;following standard procedures while carrying out reactor operation and maintenance including reactor and pool water purification and other related activities;monitoring radiation levels in the controlled, supervised and uncontrolled areas of the research reactor facility as well as during reactor operation and maintenance;controlling the physical entry of the workers and public into the research reactor facility;and ensuring that the security structures provided to protect the reactor facility are functioning properly. The thorough knowledge on the functions of the various components that make up the electrical/electronic and control systems of the reactor has been observed to be important for continuous successful maintenance of the research reactor to keep the reactor in operation. This work provides some management system activities adopted to monitor the activities of the research reactor operation and utilization to guarantee safety of workers, public and the environment as well as to safeguard a continuous operation of the research reactor. These management system activities adopted among others, are in the form of Monitoring Forms provided for monitoring the activities of the research reactor operation and utilization in order to ensure standard procedures and specifications are followed and quality services are rendered to the public.展开更多
Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the ...Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.展开更多
电力监控系统环境中存在过多噪声因素干扰,导致通信效率和质量低。为此,提出一种基于传输控制协议/网际协议(transmission control protocol/internet protocol,TCP/IP)与关联规则的多线程通信算法。将背景噪声看作电力监控信号的突变现...电力监控系统环境中存在过多噪声因素干扰,导致通信效率和质量低。为此,提出一种基于传输控制协议/网际协议(transmission control protocol/internet protocol,TCP/IP)与关联规则的多线程通信算法。将背景噪声看作电力监控信号的突变现象,查找回应突变函数的信号值,利用谐波分离算法,去除背景噪声。根据不同线程的传输特点,采用TCP/IP协议建立通信程序包,分别设置句柄、终止、挂起以及执行函数,为不同线程的通信数据,匹配不同的通信协议。试验结果证明:对电力监控系统源设备的传输信号多线程通信时,通信信号波频变化最为平稳,在0~2000 s的采样区间内,未出现传输为0现象;对背景噪声去噪后,波形相比原始信号变化明显较为稳定,没有出现过高或过低的幅值变化。所提方法通信信号表达平稳、效率较高,对原始信号的保留效果较好,去噪能力很强。展开更多
文摘The huge amount of electrical power of many countries is consumed in lighting the streets. However, vehicles pass with very low rate in specific periods of time and parts of the streets are not occupied by vehicles over time. In this paper, we propose a system that automatically switches off the light for the parts of the streets having no vehicles and turns on the light for these parts once there are some vehicles that are going to come. Logically, this system may save a large amount of the electrical power. In addition, it may increase the lifetime of the lamps and reduce the pollutions. This system automatically controls and monitors the light of the streets. It can light only the parts that have vehicles and help on the maintenance of the lighting equipments. Vehicular Ad-Hoc Networks (VANET) make it possible to propose such system. VANET enables the possibility to know the presence of vehicles, their locations, their directions and their speeds in real time. These quantities are what are needed to develop this system. An advantage of using VANET is that there is no need to use specific network and equipments to design the system, but VANET infrastructure will be used. This decreases the cost and speed up the deployment of such system. This paper focuses on the proposal of different possible architectures of this system. Results show that the saved energy may reach up to 65% and an increase of the lifetime of the lamps of 53%.
文摘An introduction is made to the composition, design method and engineering application of a remote real time monitoring system of power quality in substations based on internet. With virtual instrument and network technique adopted, this system is characterized by good real time property, high reliability, plentiful functions, and so on. It also can be used to monitor the load of a substation, such as electric locomotives.
文摘This paper presents an overview about the new Brazilian Power Quality Standard and provides a low cost device PQ meter, developed and implemented to assist the national campaign to assess the Brazilian power quality indices, unknown until now. This work contributes with the search of a low cost devices PQ meter for a cost sensitive market, and introduces the new Brazilian Power Quality Standard to the international community.
基金the State Grid Corporation and Computer Science Experimental Center of Beihang University,China
文摘The visualization techniques were explored for power quality monitoring.And remote visualization solutions were proposed for highspeed rail power quality monitoring.Taking the Beijing-Shanghai highspeed rail power monitoring as a study case,a remote visualization client,based on our proposed solutions,was developed for high-speed rail power quality monitoring to efficiently support power quality data analysis of the electricity business.The solutions collected data from monitoring stations deployed along the high-speed rail route and visualized the data set with a variety of visualization technologies to alert the specific stations of catastrophic events.The proposed solutions have been proved to be effective in supporting decision-making for the railway power scheduling and providing diagnosis information for quickly spotting any possible runtime failure in operation.
文摘The Ghana Research Reactor-1 (GHARR-1) is a 34 kW low enriched uranium (LEU) Miniature Neutron Source Reactor (MNSR), tank-in-pool type and cooled by natural circulation under atmospheric pressure operating conditions. GHARR-1 is owned by Ghana Atomic Energy Commission (GAEC) and operated by National Nuclear Research Institute (NNRI), one of the institutes of GAEC. GHARR-1 is housed by Nuclear Reactors Research Centre (NRRC), one of the Centres of NNRI. Management/Administration, Radiation protection, Reactor operation and maintenance, Reactor utilization and Physical protection are the various systems/units that integrate to manage the activities of operation and utilization of GHARR-1 in addition to the quality assurance and quality control management system of the research reactor facility. The GHARR-1 which is currently in operation follows a robust maintenance culture adopted by the management system and this has made it possible to keep the reactor in operation with minimal interruption. The management system activities adopted at the Centre to ensure safety of the workers, public and the research reactor facility include authorization of the operation of the reactor for any experiments/modifications;providing material and financial resources for maintaining the research reactor facility;following standard procedures while carrying out Neutron Activation Analysis;participation in IAEA proficiency test;irradiation sites/positions characterization;following standard procedures while carrying out reactor operation and maintenance including reactor and pool water purification and other related activities;monitoring radiation levels in the controlled, supervised and uncontrolled areas of the research reactor facility as well as during reactor operation and maintenance;controlling the physical entry of the workers and public into the research reactor facility;and ensuring that the security structures provided to protect the reactor facility are functioning properly. The thorough knowledge on the functions of the various components that make up the electrical/electronic and control systems of the reactor has been observed to be important for continuous successful maintenance of the research reactor to keep the reactor in operation. This work provides some management system activities adopted to monitor the activities of the research reactor operation and utilization to guarantee safety of workers, public and the environment as well as to safeguard a continuous operation of the research reactor. These management system activities adopted among others, are in the form of Monitoring Forms provided for monitoring the activities of the research reactor operation and utilization in order to ensure standard procedures and specifications are followed and quality services are rendered to the public.
基金This work was supported by the National Key R&D Program of China (Grant No. 2016YFF0203400). The program focuses on studies on service quality monitoring and maintenance quality control technology for large wind turbines. The project leader is Professor Shoudao Huang. The authors are also grateful to the National Natural Science Foundation of China (Grant No. 51377050) for the financial support.
文摘Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.
文摘电力监控系统环境中存在过多噪声因素干扰,导致通信效率和质量低。为此,提出一种基于传输控制协议/网际协议(transmission control protocol/internet protocol,TCP/IP)与关联规则的多线程通信算法。将背景噪声看作电力监控信号的突变现象,查找回应突变函数的信号值,利用谐波分离算法,去除背景噪声。根据不同线程的传输特点,采用TCP/IP协议建立通信程序包,分别设置句柄、终止、挂起以及执行函数,为不同线程的通信数据,匹配不同的通信协议。试验结果证明:对电力监控系统源设备的传输信号多线程通信时,通信信号波频变化最为平稳,在0~2000 s的采样区间内,未出现传输为0现象;对背景噪声去噪后,波形相比原始信号变化明显较为稳定,没有出现过高或过低的幅值变化。所提方法通信信号表达平稳、效率较高,对原始信号的保留效果较好,去噪能力很强。