The supercritical CO_(2)(S-CO_(2)) Brayton cycle is expected to replace steam cycle in the application of solar power tower system due to the attractive potential to improve efficiency and reduce costs.Since the conce...The supercritical CO_(2)(S-CO_(2)) Brayton cycle is expected to replace steam cycle in the application of solar power tower system due to the attractive potential to improve efficiency and reduce costs.Since the concentrated solar power plant with thermal energy storage is usually located in drought area and used to provide a dispatchable power output,the S-CO_(2) Brayton cycle has to operate under fluctuating ambient temperature and diverse power demand scenarios.In addition,the cycle design condition will directly affect the off-design performance.In this work,the combined effects of design condition,and distributions of ambient temperature and power demand on the cycle operating performance are analyzed,and the off-design performance maps are proposed for the first time.A cycle design method with feedback mechanism of operating performance under varied ambient temperature and power demand is introduced innovatively.Results show that the low design value of compressor inlet temperature is not conductive to efficient operation under low loads and sufficient output under high ambient temperatures.The average yearly efficiency is most affected by the average power demand,while the load cover factor is significantly influenced by the average ambient temperature.With multi-objective optimization,the optimal solution of designed compressor inlet temperature is close to the minimum value of35℃ in Delingha with low ambient temperature,while reaches 44.15℃ in Daggett under the scenario of high ambient temperature,low average power demand,long duration and large value of peak load during the peak temperature period.If the cycle designed with compressor inlet temperature of 35℃ instead of 44.15℃ in Daggett under light industry power demand,the reduction of load cover factor will reach 0.027,but the average yearly efficiency can barely be improved.展开更多
The famous ancient supernova SN 1054 could have been too bright to be explained in the “standard” radioactive-powered supernova scenario. As an alternative attempt, we demonstrate that the spin-down of the newly bor...The famous ancient supernova SN 1054 could have been too bright to be explained in the “standard” radioactive-powered supernova scenario. As an alternative attempt, we demonstrate that the spin-down of the newly born Crab pulsar could provide a sufficient energy supply to make SN 1054 visible at daytime for 23 days and at night for 653 days, where a one-zone semi-analytical model is employed. Our results indicate that SN 1054 could be a “normal” cousin of magnetar-powered superluminous supernovae. Therefore, SN 1054-like supernovae could be a probe to uncover the properties of newly born neutron stars, which provide initial conditions for studies on neutron star evolutions.展开更多
The future energy policy,long-term energy supply plan,and necessity of power system interconnection are discussed considering the climate change agreement and national carbon neutrality policy.Although several studies...The future energy policy,long-term energy supply plan,and necessity of power system interconnection are discussed considering the climate change agreement and national carbon neutrality policy.Although several studies have been conducted on power system interconnection related projects,a few reviews have been performed related to the Greenhouse Gas Convention in North-East Asian(NEA)regions.Therefore,the future directions and possible scenarios on power system interconnection are studied by combining the issues by comprehensively considering carbon neutrality policy according to the perspective of Korea.展开更多
In practical power systems,operators generally keep interface flowing under the transient stability constrained with interface real power flow limits(TS-IRPFL)to guarantee transient stability of the system.Many method...In practical power systems,operators generally keep interface flowing under the transient stability constrained with interface real power flow limits(TS-IRPFL)to guarantee transient stability of the system.Many methods of computing TS-IRPFL have been proposed.However,in practice,the method widely used to determine TS-IRPFL is based on selection and analysis of typical scenarios as well as scenario matching.First,typical scenarios are selected and analyzed to obtain accurate limits,then the scenario to be analyzed is matched with a certain typical scenario,whose limit is adopted as the forecast limit.In this paper,following the steps described above,a pragmatic method to determine TS-IRPFL is proposed.The proposed method utilizes data-driven tools to improve the steps of scenario selection and matching.First of all,we formulate a clear model of power system scenario similarity.Based on the similarity model,we develop a typical scenario selector by clustering and a scenario matcher by nearest neighbor algorithm.The proposed method is pragmatic because it does not change the existing procedure.Moreover,it is much more reasonable than the traditional method.Test results verify the validity of the method.展开更多
Generator regulation and wind power curtailment are two conflicting ways to deal with the inaccurate prediction and volatility of wind power.This study focuses on planning the day-ahead schedule based on optimal trade...Generator regulation and wind power curtailment are two conflicting ways to deal with the inaccurate prediction and volatility of wind power.This study focuses on planning the day-ahead schedule based on optimal trade-off between regulation of generators and wind curtailment.Compared to traditional economic dispatch methods,the proposed schedule is more robust and adaptive to multiple forecast scenarios instead of a single forecast scenario.The works of this paper are as follows:First,an economic dispatch problem based on multiple scenarios is formulated with the objective of minimizing both generator regulation and wind curtailment.Next,a forecast method for wind power scenarios is given.Finally,the proposed model is verified by comparing with other dispatch models that are based on single forecast scenario.The simulation results demonstrate the effectiveness of the proposed method with less wind curtailment,generator regulation,and operational cost.In addition,the penalty factors are set as parameters and the influences on the generators’regulation and wind curtailment are analyzed,providing the reference for system operators with different regulatory purposes.展开更多
基金supported by Beijing Natural Science Foundation (Grant No.3202014)。
文摘The supercritical CO_(2)(S-CO_(2)) Brayton cycle is expected to replace steam cycle in the application of solar power tower system due to the attractive potential to improve efficiency and reduce costs.Since the concentrated solar power plant with thermal energy storage is usually located in drought area and used to provide a dispatchable power output,the S-CO_(2) Brayton cycle has to operate under fluctuating ambient temperature and diverse power demand scenarios.In addition,the cycle design condition will directly affect the off-design performance.In this work,the combined effects of design condition,and distributions of ambient temperature and power demand on the cycle operating performance are analyzed,and the off-design performance maps are proposed for the first time.A cycle design method with feedback mechanism of operating performance under varied ambient temperature and power demand is introduced innovatively.Results show that the low design value of compressor inlet temperature is not conductive to efficient operation under low loads and sufficient output under high ambient temperatures.The average yearly efficiency is most affected by the average power demand,while the load cover factor is significantly influenced by the average ambient temperature.With multi-objective optimization,the optimal solution of designed compressor inlet temperature is close to the minimum value of35℃ in Delingha with low ambient temperature,while reaches 44.15℃ in Daggett under the scenario of high ambient temperature,low average power demand,long duration and large value of peak load during the peak temperature period.If the cycle designed with compressor inlet temperature of 35℃ instead of 44.15℃ in Daggett under light industry power demand,the reduction of load cover factor will reach 0.027,but the average yearly efficiency can barely be improved.
基金supported by the National Natural Science Foundation of China (Grant No. 11473008)the funding for the Authors of National Excellent Doctoral Dissertations of China (Grant No. 201225)the Program for New Century Excellent Talents in University (Grant No. NCET-13-0822)
文摘The famous ancient supernova SN 1054 could have been too bright to be explained in the “standard” radioactive-powered supernova scenario. As an alternative attempt, we demonstrate that the spin-down of the newly born Crab pulsar could provide a sufficient energy supply to make SN 1054 visible at daytime for 23 days and at night for 653 days, where a one-zone semi-analytical model is employed. Our results indicate that SN 1054 could be a “normal” cousin of magnetar-powered superluminous supernovae. Therefore, SN 1054-like supernovae could be a probe to uncover the properties of newly born neutron stars, which provide initial conditions for studies on neutron star evolutions.
文摘The future energy policy,long-term energy supply plan,and necessity of power system interconnection are discussed considering the climate change agreement and national carbon neutrality policy.Although several studies have been conducted on power system interconnection related projects,a few reviews have been performed related to the Greenhouse Gas Convention in North-East Asian(NEA)regions.Therefore,the future directions and possible scenarios on power system interconnection are studied by combining the issues by comprehensively considering carbon neutrality policy according to the perspective of Korea.
基金This work was supported by National Key R&D Program of China(2018YFB0904500)and State Grid Corporation of China。
文摘In practical power systems,operators generally keep interface flowing under the transient stability constrained with interface real power flow limits(TS-IRPFL)to guarantee transient stability of the system.Many methods of computing TS-IRPFL have been proposed.However,in practice,the method widely used to determine TS-IRPFL is based on selection and analysis of typical scenarios as well as scenario matching.First,typical scenarios are selected and analyzed to obtain accurate limits,then the scenario to be analyzed is matched with a certain typical scenario,whose limit is adopted as the forecast limit.In this paper,following the steps described above,a pragmatic method to determine TS-IRPFL is proposed.The proposed method utilizes data-driven tools to improve the steps of scenario selection and matching.First of all,we formulate a clear model of power system scenario similarity.Based on the similarity model,we develop a typical scenario selector by clustering and a scenario matcher by nearest neighbor algorithm.The proposed method is pragmatic because it does not change the existing procedure.Moreover,it is much more reasonable than the traditional method.Test results verify the validity of the method.
基金This work was supported by the Science and Technology Projects of State Grid(DZ71-14-001)the National Natural Science Foundation of China(5137727).
文摘Generator regulation and wind power curtailment are two conflicting ways to deal with the inaccurate prediction and volatility of wind power.This study focuses on planning the day-ahead schedule based on optimal trade-off between regulation of generators and wind curtailment.Compared to traditional economic dispatch methods,the proposed schedule is more robust and adaptive to multiple forecast scenarios instead of a single forecast scenario.The works of this paper are as follows:First,an economic dispatch problem based on multiple scenarios is formulated with the objective of minimizing both generator regulation and wind curtailment.Next,a forecast method for wind power scenarios is given.Finally,the proposed model is verified by comparing with other dispatch models that are based on single forecast scenario.The simulation results demonstrate the effectiveness of the proposed method with less wind curtailment,generator regulation,and operational cost.In addition,the penalty factors are set as parameters and the influences on the generators’regulation and wind curtailment are analyzed,providing the reference for system operators with different regulatory purposes.