High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-...High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-IPEM), consisting of two chip scale packaged MOSFETs and the corresponding gate driver and protection circuits, is fabricated at the laboratory. The reliability of the IPEM is controlled from the shape design of solder joints and the control of assembly process parameters. The parasitic parameters are extracted using Agilent 4395A impedance analyzer for building the parasitic parameter model of the HB- IPEM. A 12 V/3 A output synchronous rectifier Buck converter using the HB-IPEM is built to test the electrical performance of the HB-IPEM. Low voltage spikes on two MOSFETs illustrate that the three-dimensional package of the HB-IPEM can decrease parasitic inductance. Temperature distribution simulation results of the HB-IPEM using FLOTHERM are given. Heat dissipation of the solder joints makes the peak junction temperature of the chip drop obviously. The package realizes three-dimensional heat dissipation and has better thermal management.展开更多
Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a ...Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a need to reduce their losses and improve their performance to reduce electric power consumption. Current power semiconductor devices, such as inverters, are made of silicon (Si), but the performance of these Si power devices is reaching its limit due to physical properties and energy bandgap. To address this issue, recent developments in wide bandgap (WBG) semiconductor materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer the potential for a new generation of power semiconductor devices that can perform significantly better than silicon-based devices. In this research, a green synthesized copper-zinc-tin-sulfide (CZTS) nanoparticle is proposed as a new WBG semiconductor material that could be used for optical and electronic devices. Its synthesis, consisting of the production methods and materials used, is discussed. The characterization is also discussed, and further research is recommended in the later sections to enable the continual advancement of this technology.展开更多
Radio frequency/microwave-directed energy sources using wide bandgap SiC photoconductive semiconductors have attracted much attention due to their unique advantages of high-power output and multi-parameter adjustable ...Radio frequency/microwave-directed energy sources using wide bandgap SiC photoconductive semiconductors have attracted much attention due to their unique advantages of high-power output and multi-parameter adjustable ability.Over the past several years,benefitting from the sustainable innovations in laser technology and the significant progress in materials technology,megawatt-class output power electrical pulses with a flexible frequency in the P and L microwave wavebands have been achieved by photoconductive semiconductor devices.Here,we mainly summarize and review the recent progress of the high-power photonic microwave generation based on the SiC photoconductive semiconductor devices in the linear modulation mode,including the mechanism,system architecture,critical technology,and experimental demonstration of the proposed high-power photonic microwave sources.The outlooks and challenges for the future of multi-channel power synthesis development of higher power photonic microwave using wide bandgap photoconductors are also discussed.展开更多
Complex circuitry of electronic infrastructure of compact micro-grids with multiple renewable energy sources feeding the loads using parallel operation of inverters acts as a deterrent in developing such systems. This...Complex circuitry of electronic infrastructure of compact micro-grids with multiple renewable energy sources feeding the loads using parallel operation of inverters acts as a deterrent in developing such systems. This paper deals with applicable techniques reducing the driving circuits in parallel power inverters used in micro-grid system (MGS), mainly focused on the distributed generation (DG) in islanded mode. The method introduced in this paper, gives a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. DC micro-grids are proposed and researched for the good connection with DC output type sources such as photovoltaic (PV), fuel cell, and secondary battery. In this paper, the electronic infrastructure of micro-grid is expressed. Then discussed the reasons for its complexity and the possibility of reducing the elements of electronic circuits are investigated. The reason for this is in order to compact DC micro-grid system for electrification to places like villages. Digital Simulation in Matlab Simulink is used to show the effectiveness of this novel driver topology for parallel operating inverters (NDTPI).展开更多
Wide-bandgap semiconductors exhibit much larger energybandgaps than traditional semiconductors such as silicon,rendering them very promising to be applied in the fields of electronics and optoelectronics.Prominent exa...Wide-bandgap semiconductors exhibit much larger energybandgaps than traditional semiconductors such as silicon,rendering them very promising to be applied in the fields of electronics and optoelectronics.Prominent examples of semiconductors include SiC,GaN,ZnO,and diamond,which exhibitdistinctive characteristics such as elevated mobility and thermalconductivity.These characteristics facilitate the operation of awide range of devices,including energy-efficient bipolar junctiontransistors(BJTs)and metal-oxide-semiconductor field-effecttransistors(MOSFETs),as well as high-frequency high-electronmobility transistors(HEMTs)and optoelectronic components suchas light-emitting diodes(LEDs)and lasers.These semiconductorsare used in building integrated circuits(ICs)to facilitate theoperation of power electronics,computer devices,RF systems,andother optoelectronic advancements.These breakthroughs includevarious applications such as imaging,optical communication,andsensing.Among them,the field of power electronics has witnessedtremendous progress in recent years with the development of widebandgap(WBG)semiconductor devices,which is capable ofswitching large currents and voltages rapidly with low losses.However,it has been proven challenging to integrate these deviceswith silicon complementary metal oxide semiconductor(CMOS)logic circuits required for complex control functions.The monolithic integration of silicon CMOS with WBG devices increases thecomplexity of fabricating monolithically integrated smart integrated circuits(ICs).This review article proposes implementingCMOS logic directly on the WBG platform as a solution.However,achieving the CMOS functionalities with the adoption of WBGmaterials still remains a significant hurdle.This article summarizesthe research progress in the fabrication of integrated circuitsadopting various WBG materials ranging from SiC to diamond,with the goal of building future smart power ICs.展开更多
倒装芯片(Flip Chip,FC)技术广泛应用于微电子封装中,将该技术引入到三维的集成电力电子模块(Integrated Power Electronics Module,IPEM)的封装中,可以构成倒装芯片集成电力电子模块(FC-IPEM)。该文详细介绍FC-IPEM的结构和组装程序。...倒装芯片(Flip Chip,FC)技术广泛应用于微电子封装中,将该技术引入到三维的集成电力电子模块(Integrated Power Electronics Module,IPEM)的封装中,可以构成倒装芯片集成电力电子模块(FC-IPEM)。该文详细介绍FC-IPEM的结构和组装程序。在实验室完成由两只MOSFET和驱动、保护等电路构成的半桥FC-IPEM,并采用它构成同步整流Buck变换器,对半桥FC-IPEM进行电气性能测试,最后给出测试结果。展开更多
基金Fok Ying Tung Education Foundation(No.91058)the Natural Science Foundation of High Education Institutions of Jiangsu Province(No.08KJD470004)Qing Lan Project of Jiangsu Province of 2008
文摘High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-IPEM), consisting of two chip scale packaged MOSFETs and the corresponding gate driver and protection circuits, is fabricated at the laboratory. The reliability of the IPEM is controlled from the shape design of solder joints and the control of assembly process parameters. The parasitic parameters are extracted using Agilent 4395A impedance analyzer for building the parasitic parameter model of the HB- IPEM. A 12 V/3 A output synchronous rectifier Buck converter using the HB-IPEM is built to test the electrical performance of the HB-IPEM. Low voltage spikes on two MOSFETs illustrate that the three-dimensional package of the HB-IPEM can decrease parasitic inductance. Temperature distribution simulation results of the HB-IPEM using FLOTHERM are given. Heat dissipation of the solder joints makes the peak junction temperature of the chip drop obviously. The package realizes three-dimensional heat dissipation and has better thermal management.
文摘Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a need to reduce their losses and improve their performance to reduce electric power consumption. Current power semiconductor devices, such as inverters, are made of silicon (Si), but the performance of these Si power devices is reaching its limit due to physical properties and energy bandgap. To address this issue, recent developments in wide bandgap (WBG) semiconductor materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer the potential for a new generation of power semiconductor devices that can perform significantly better than silicon-based devices. In this research, a green synthesized copper-zinc-tin-sulfide (CZTS) nanoparticle is proposed as a new WBG semiconductor material that could be used for optical and electronic devices. Its synthesis, consisting of the production methods and materials used, is discussed. The characterization is also discussed, and further research is recommended in the later sections to enable the continual advancement of this technology.
基金supported in part by the National Natural Science Foundation of China(Nos.62071477 and 62101577)the Natural Science Foundation of Hunan Province(No.2021JJ40660)。
文摘Radio frequency/microwave-directed energy sources using wide bandgap SiC photoconductive semiconductors have attracted much attention due to their unique advantages of high-power output and multi-parameter adjustable ability.Over the past several years,benefitting from the sustainable innovations in laser technology and the significant progress in materials technology,megawatt-class output power electrical pulses with a flexible frequency in the P and L microwave wavebands have been achieved by photoconductive semiconductor devices.Here,we mainly summarize and review the recent progress of the high-power photonic microwave generation based on the SiC photoconductive semiconductor devices in the linear modulation mode,including the mechanism,system architecture,critical technology,and experimental demonstration of the proposed high-power photonic microwave sources.The outlooks and challenges for the future of multi-channel power synthesis development of higher power photonic microwave using wide bandgap photoconductors are also discussed.
文摘Complex circuitry of electronic infrastructure of compact micro-grids with multiple renewable energy sources feeding the loads using parallel operation of inverters acts as a deterrent in developing such systems. This paper deals with applicable techniques reducing the driving circuits in parallel power inverters used in micro-grid system (MGS), mainly focused on the distributed generation (DG) in islanded mode. The method introduced in this paper, gives a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. DC micro-grids are proposed and researched for the good connection with DC output type sources such as photovoltaic (PV), fuel cell, and secondary battery. In this paper, the electronic infrastructure of micro-grid is expressed. Then discussed the reasons for its complexity and the possibility of reducing the elements of electronic circuits are investigated. The reason for this is in order to compact DC micro-grid system for electrification to places like villages. Digital Simulation in Matlab Simulink is used to show the effectiveness of this novel driver topology for parallel operating inverters (NDTPI).
基金supported by KAUST BaselineFund:BAS/1/1664-01-01,KAUST Near-term Grand Challenge Fund:REI/1/4999-01-01,KAUST Impact Acceleration Fund:REI/1/5124-01-01.
文摘Wide-bandgap semiconductors exhibit much larger energybandgaps than traditional semiconductors such as silicon,rendering them very promising to be applied in the fields of electronics and optoelectronics.Prominent examples of semiconductors include SiC,GaN,ZnO,and diamond,which exhibitdistinctive characteristics such as elevated mobility and thermalconductivity.These characteristics facilitate the operation of awide range of devices,including energy-efficient bipolar junctiontransistors(BJTs)and metal-oxide-semiconductor field-effecttransistors(MOSFETs),as well as high-frequency high-electronmobility transistors(HEMTs)and optoelectronic components suchas light-emitting diodes(LEDs)and lasers.These semiconductorsare used in building integrated circuits(ICs)to facilitate theoperation of power electronics,computer devices,RF systems,andother optoelectronic advancements.These breakthroughs includevarious applications such as imaging,optical communication,andsensing.Among them,the field of power electronics has witnessedtremendous progress in recent years with the development of widebandgap(WBG)semiconductor devices,which is capable ofswitching large currents and voltages rapidly with low losses.However,it has been proven challenging to integrate these deviceswith silicon complementary metal oxide semiconductor(CMOS)logic circuits required for complex control functions.The monolithic integration of silicon CMOS with WBG devices increases thecomplexity of fabricating monolithically integrated smart integrated circuits(ICs).This review article proposes implementingCMOS logic directly on the WBG platform as a solution.However,achieving the CMOS functionalities with the adoption of WBGmaterials still remains a significant hurdle.This article summarizesthe research progress in the fabrication of integrated circuitsadopting various WBG materials ranging from SiC to diamond,with the goal of building future smart power ICs.
文摘倒装芯片(Flip Chip,FC)技术广泛应用于微电子封装中,将该技术引入到三维的集成电力电子模块(Integrated Power Electronics Module,IPEM)的封装中,可以构成倒装芯片集成电力电子模块(FC-IPEM)。该文详细介绍FC-IPEM的结构和组装程序。在实验室完成由两只MOSFET和驱动、保护等电路构成的半桥FC-IPEM,并采用它构成同步整流Buck变换器,对半桥FC-IPEM进行电气性能测试,最后给出测试结果。