In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power s...In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power series rings. These results allow for obtaining some conditions for non-existence of self-dual permutation codes over formal power series rings. Finally, we describe self-dual permutation codes over finite principal ideal rings by examining permutation codes over their component chain rings.展开更多
Let R be a ring and (S,≤) a strictly ordered monoid. In this paper, we deal with a new approach to reflexive property for rings by using nilpotent elements, in this direction we introduce the notions of generalized p...Let R be a ring and (S,≤) a strictly ordered monoid. In this paper, we deal with a new approach to reflexive property for rings by using nilpotent elements, in this direction we introduce the notions of generalized power series reflexive and nil generalized power series reflexive, respectively. We obtain various necessary or sufficient conditions for a ring to be generalized power series reflexive and nil generalized power series reflexive. Examples are given to show that, nil generalized power series reflexive need not be generalized power series reflexive and vice versa, and nil generalized power series reflexive but not semicommutative are presented. We proved that, if R is a left APP-ring, then R is generalized power series reflexive, and R is nil generalized power series reflexive if and only if R/I is nil generalized power series reflexive. Moreover, we investigate ring extensions which have roles in ring theory.展开更多
Let R be a ring such that all left semicentral idempotents axe central and α a weakly rigid endomorphism of R. It is shown that the skew power series ring R[[x; α]] is right p.q.Baer if and only if R is right p.q.Ba...Let R be a ring such that all left semicentral idempotents axe central and α a weakly rigid endomorphism of R. It is shown that the skew power series ring R[[x; α]] is right p.q.Baer if and only if R is right p.q.Baer and any countable family of idempotents in R has a generalized join in I(R), where I(R) is the set of all idempotents of R.展开更多
For a ring endomorphism α, in this paper we introduce the notion of s-power- serieswise nil-Armendariz rings, which are a generalization of α-power-serieswise Armendariz rings. A number of properties of this general...For a ring endomorphism α, in this paper we introduce the notion of s-power- serieswise nil-Armendariz rings, which are a generalization of α-power-serieswise Armendariz rings. A number of properties of this generalization are established, and the extensions of α- power-serieswise nil-Armendariz rings are investigated. Which generalizes the corresponding results of nil-Armendariz rings and power-serieswise nil-Armendariz rings.展开更多
Let A be a ring.In this paper we generalize some results introduced by Aliabad and Mohamadian.We give a relation bet ween the z-ideals of A and t hose of the formal power series rings in an infinite set of indetermiii...Let A be a ring.In this paper we generalize some results introduced by Aliabad and Mohamadian.We give a relation bet ween the z-ideals of A and t hose of the formal power series rings in an infinite set of indetermiiiates over A.Consider A[[Xa]]3 and its subrings A[[X_(A)]]_(1),A[[X_(A)]]_(2),and A[[X_(A)]]_(α),where a is an infinite cardinal number.In fact,a z-ideal of the rings defined above is of the form I+(X_(A))i,where i=1,2,3 or an infinite cardinal number and I is a z-ideal of A.In addition,we prove that the same condition given by Aliabad and Mohamadian can be used to get a relation between the minimal prime ideals of the ring of the formal power series in an infinite set of indeterminates and those of the ring of coefficients.As a natural result,we get a relation between the z°-ideals of the formal power series ring in an infinite set of indeterminates and those of the ring of coefficients.展开更多
Let R be a ring. We consider left (or right) principal quasi-Baerness of the left skew formal power series ring R[[x;α]] over R where a is a ring automorphism of R. We give a necessary and sufficient condition unde...Let R be a ring. We consider left (or right) principal quasi-Baerness of the left skew formal power series ring R[[x;α]] over R where a is a ring automorphism of R. We give a necessary and sufficient condition under which the ring R[[x; α]] is left (or right) principally quasi-Baer. As an application we show that R[[x]] is left principally quasi-Baer if and only if R is left principally quasi- Baer and the left annihilator of the left ideal generated by any countable family of idempotents in R is generated by an idempotent.展开更多
Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power ser...Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power series with coefficients in R and exponents in S, is right p.q.Baer if and only if R is right p.q.Baer and any S-indexed subset of I(R) has a generalized join in I(R), where I(R) is the set of all idempotents of R.展开更多
Let R be a commutative ring and (S, ≤) a strictly totally ordered monoid which satisfies the condition that 0 ≤ s for every s ∈ S. In this paper we show that if RM is a PS-module, then the module [[MS≤]] of genera...Let R be a commutative ring and (S, ≤) a strictly totally ordered monoid which satisfies the condition that 0 ≤ s for every s ∈ S. In this paper we show that if RM is a PS-module, then the module [[MS≤]] of generalized power series over M is a PS [[RS,≤]]-module.展开更多
Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]]...Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.展开更多
Let R be a finite chain ring with maximal ideal (7) and residue field F,and letγ be of nilpotency index t. To every code C of length n over R, a tower of codes C = (C : γ0) C_ (C: 7) C ... C_ (C: γ2) C_ ...Let R be a finite chain ring with maximal ideal (7) and residue field F,and letγ be of nilpotency index t. To every code C of length n over R, a tower of codes C = (C : γ0) C_ (C: 7) C ... C_ (C: γ2) C_ .-. C_ (C:γ^t-1) can be associated with C, where for any r C R, (C : r) = {e C Rn I re E C}. Using generator elements of the projection of such a tower of codes to the residue field F, we characterize cyclic codes over R. This characterization turns the condition for codes over R to be cyclic into one for codes over the residue field F. Furthermore, we obtain a characterization of cyclic codes over the formal power series ring of a finite chain ring.展开更多
Let R be a ring and S a cancellative and torsion-free monoid and 〈 a strict order on S. If either (S,≤) satisfies the condition that 0 ≤ s for all s ∈ S, or R is reduced, then the ring [[R^S,≤]] of the generali...Let R be a ring and S a cancellative and torsion-free monoid and 〈 a strict order on S. If either (S,≤) satisfies the condition that 0 ≤ s for all s ∈ S, or R is reduced, then the ring [[R^S,≤]] of the generalized power series with coefficients in R and exponents in S has the same triangulating dimension as R. Furthermore, if R is a PWP ring, then so is [[R^S,≤]].展开更多
Let A be a commutative ring with unit.We characterize when A is nonnil-Noetherian in terms of the quotient ring A/Nil(A)and in terms of the power series ring A[[X]].
Let A,B be associative rings with identity,and(S.≤)a strictly totally ordered monoid which is also artinian and finitely generated.For any bimodule AaMB. we show that the bimodule [[A^(S.≤)]][M^(S.≤)][[B^(S.≤)]]de...Let A,B be associative rings with identity,and(S.≤)a strictly totally ordered monoid which is also artinian and finitely generated.For any bimodule AaMB. we show that the bimodule [[A^(S.≤)]][M^(S.≤)][[B^(S.≤)]]defines a Morita duality if and only if _AM_B defines a Morita duality and A is left noetherian.B is right noetherian.As a corollary,it.is shown that the ring[[A^(S.≤)]]of generalized power series over A has a Morita duality if and only if A is a left noetherian ring with a Morita duality induced by a bimodule _AM_B such that B is right noetherian.展开更多
As a generalization of power series rings, Ribenboim introduced the notion of the rings of generalized power series. Let R be a commutative ring, and (S.≤) a strictly totally ordered monoid. We prove that (1) the...As a generalization of power series rings, Ribenboim introduced the notion of the rings of generalized power series. Let R be a commutative ring, and (S.≤) a strictly totally ordered monoid. We prove that (1) the ring [[R<sup>(</sup>S.≤]] of generalized power series is a PP-ring if and only if R is a PP-ring and every S-indexed subset C of B(R) (the set of all idempotents of R) has a least upper bound in B(R). and (2) if (S. ≤) also satisfies the condition that 0≤s for any s∈S, then the ring [[R<sup>(</sup>S.≤]] is weakly PP if and only if R is weakly PP.展开更多
In this paper a connective study of Gould's annihilation coefficients and Abel-Gontscharoff polynomials is presented. It is shown that Gould's annihilation coefficients and Abel-Gontscharoff polynomials are ac...In this paper a connective study of Gould's annihilation coefficients and Abel-Gontscharoff polynomials is presented. It is shown that Gould's annihilation coefficients and Abel-Gontscharoff polynomials are actually equivalent to each other under certain linear substitutions for the variables. Moreover, a pair of related expansion formulas involving Gontscharoff s remainder and a new form of it are demonstrated, and also illustrated with several examples.展开更多
Let (S, ≤) be a strictly totally ordered monoid, and M and N be left R modules. We show the following results: (1) If (S, ≤) is finitely generated and satisfies the condition that 0≤S for any s ∈S, then Epi([[RS,...Let (S, ≤) be a strictly totally ordered monoid, and M and N be left R modules. We show the following results: (1) If (S, ≤) is finitely generated and satisfies the condition that 0≤S for any s ∈S, then Epi([[RS,≤]][[MS,≤]]) = Epi([[RS,≤]][[NS,≤]]) if and only if Epi(M) = Epi(N); (2) If (S,≤) is artinian, then Mono([[RS,≤]][MS,≤])= Mono([[RS,≤]][NS,≤]) if and only if Mono(M) = Mono(N).展开更多
This paper is motivated by S. Park [10] in which the injective cover of left R[x]- module M[x? ] of inverse polynomials over a left R-module M was discussed. The 1 author considers the ?-covers of modules and shows th...This paper is motivated by S. Park [10] in which the injective cover of left R[x]- module M[x? ] of inverse polynomials over a left R-module M was discussed. The 1 author considers the ?-covers of modules and shows that if η : P ?→ M is an ?- cover of M, then [ηS, ] : [PS, ] ?→ [MS, ] is an [?S, ]-cover of left [[RS, ]]-module ≤ ≤ ≤ ≤ ≤ [MS, ], where ? is a class of left R-modules and [MS, ] is the left [[RS, ]]-module of ≤ ≤ ≤ generalized inverse polynomials over a left R-module M. Also some properties of the injective cover of left [[RS, ]]-module [MS, ] are discussed. ≤展开更多
Let (S,≤) be a strictly totally ordered monoid which is also artinian, and R a right noetherian ring. Assume that M is a finitely generated right R-module and N is a left Rmodule. Denote by [[MS,≤]] and [NS,≤] the ...Let (S,≤) be a strictly totally ordered monoid which is also artinian, and R a right noetherian ring. Assume that M is a finitely generated right R-module and N is a left Rmodule. Denote by [[MS,≤]] and [NS,≤] the module of generalized power series over M, and the generalized Macaulay-Northcott module over N, respectively. Then we show that there exists an isomorphism of Abelian groups:Tori[[ RS,≤]]([[MS,≤]],[NS,≤])≌ s∈S ToriR (M,N).展开更多
文摘In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power series rings. These results allow for obtaining some conditions for non-existence of self-dual permutation codes over formal power series rings. Finally, we describe self-dual permutation codes over finite principal ideal rings by examining permutation codes over their component chain rings.
文摘Let R be a ring and (S,≤) a strictly ordered monoid. In this paper, we deal with a new approach to reflexive property for rings by using nilpotent elements, in this direction we introduce the notions of generalized power series reflexive and nil generalized power series reflexive, respectively. We obtain various necessary or sufficient conditions for a ring to be generalized power series reflexive and nil generalized power series reflexive. Examples are given to show that, nil generalized power series reflexive need not be generalized power series reflexive and vice versa, and nil generalized power series reflexive but not semicommutative are presented. We proved that, if R is a left APP-ring, then R is generalized power series reflexive, and R is nil generalized power series reflexive if and only if R/I is nil generalized power series reflexive. Moreover, we investigate ring extensions which have roles in ring theory.
基金National Natural Science Foundation of China (10171082), TRAPOYT the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China
文摘Let R be a ring such that all left semicentral idempotents axe central and α a weakly rigid endomorphism of R. It is shown that the skew power series ring R[[x; α]] is right p.q.Baer if and only if R is right p.q.Baer and any countable family of idempotents in R has a generalized join in I(R), where I(R) is the set of all idempotents of R.
文摘For a ring endomorphism α, in this paper we introduce the notion of s-power- serieswise nil-Armendariz rings, which are a generalization of α-power-serieswise Armendariz rings. A number of properties of this generalization are established, and the extensions of α- power-serieswise nil-Armendariz rings are investigated. Which generalizes the corresponding results of nil-Armendariz rings and power-serieswise nil-Armendariz rings.
文摘Let A be a ring.In this paper we generalize some results introduced by Aliabad and Mohamadian.We give a relation bet ween the z-ideals of A and t hose of the formal power series rings in an infinite set of indetermiiiates over A.Consider A[[Xa]]3 and its subrings A[[X_(A)]]_(1),A[[X_(A)]]_(2),and A[[X_(A)]]_(α),where a is an infinite cardinal number.In fact,a z-ideal of the rings defined above is of the form I+(X_(A))i,where i=1,2,3 or an infinite cardinal number and I is a z-ideal of A.In addition,we prove that the same condition given by Aliabad and Mohamadian can be used to get a relation between the minimal prime ideals of the ring of the formal power series in an infinite set of indeterminates and those of the ring of coefficients.As a natural result,we get a relation between the z°-ideals of the formal power series ring in an infinite set of indeterminates and those of the ring of coefficients.
基金Supported by National Natural Science Foundation of China (Grant No.10961021)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China
文摘Let R be a ring. We consider left (or right) principal quasi-Baerness of the left skew formal power series ring R[[x;α]] over R where a is a ring automorphism of R. We give a necessary and sufficient condition under which the ring R[[x; α]] is left (or right) principally quasi-Baer. As an application we show that R[[x]] is left principally quasi-Baer if and only if R is left principally quasi- Baer and the left annihilator of the left ideal generated by any countable family of idempotents in R is generated by an idempotent.
基金TRAPOYT(200280)the Cultivation Fund(704004)of the Key Scientific and Technical Innovation Project,Ministry of Education of China
文摘Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power series with coefficients in R and exponents in S, is right p.q.Baer if and only if R is right p.q.Baer and any S-indexed subset of I(R) has a generalized join in I(R), where I(R) is the set of all idempotents of R.
基金The NNSF (10171082) of China and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, P.R.C.
文摘Let R be a commutative ring and (S, ≤) a strictly totally ordered monoid which satisfies the condition that 0 ≤ s for every s ∈ S. In this paper we show that if RM is a PS-module, then the module [[MS≤]] of generalized power series over M is a PS [[RS,≤]]-module.
基金The Youth Foundation(QN2012-14)of Hexi University
文摘Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.
基金supported by the Natural Science Foundation of Hubei Province (B20114410)the Natural Science Foundation of Hubei Polytechnic University (12xjz14A)
文摘Let R be a finite chain ring with maximal ideal (7) and residue field F,and letγ be of nilpotency index t. To every code C of length n over R, a tower of codes C = (C : γ0) C_ (C: 7) C ... C_ (C: γ2) C_ .-. C_ (C:γ^t-1) can be associated with C, where for any r C R, (C : r) = {e C Rn I re E C}. Using generator elements of the projection of such a tower of codes to the residue field F, we characterize cyclic codes over R. This characterization turns the condition for codes over R to be cyclic into one for codes over the residue field F. Furthermore, we obtain a characterization of cyclic codes over the formal power series ring of a finite chain ring.
基金National Natural science Foundation of China(10171082)the Cultivation Fund of the Key Scientific Technical Innovation Project,Ministry of Education of ChinaTRAPOYT
文摘Let R be a ring and S a cancellative and torsion-free monoid and 〈 a strict order on S. If either (S,≤) satisfies the condition that 0 ≤ s for all s ∈ S, or R is reduced, then the ring [[R^S,≤]] of the generalized power series with coefficients in R and exponents in S has the same triangulating dimension as R. Furthermore, if R is a PWP ring, then so is [[R^S,≤]].
文摘Let A be a commutative ring with unit.We characterize when A is nonnil-Noetherian in terms of the quotient ring A/Nil(A)and in terms of the power series ring A[[X]].
基金supported by National Natural Science Foundation of China(10171082)Foundation for University Key Teacherthe Ministry of Education(GG-110-10736-1001)
文摘Let A,B be associative rings with identity,and(S.≤)a strictly totally ordered monoid which is also artinian and finitely generated.For any bimodule AaMB. we show that the bimodule [[A^(S.≤)]][M^(S.≤)][[B^(S.≤)]]defines a Morita duality if and only if _AM_B defines a Morita duality and A is left noetherian.B is right noetherian.As a corollary,it.is shown that the ring[[A^(S.≤)]]of generalized power series over A has a Morita duality if and only if A is a left noetherian ring with a Morita duality induced by a bimodule _AM_B such that B is right noetherian.
基金Research supported by National Natural Science Foundation of China. 19501007Natural Science Foundation of Gansu. ZQ-96-01
文摘As a generalization of power series rings, Ribenboim introduced the notion of the rings of generalized power series. Let R be a commutative ring, and (S.≤) a strictly totally ordered monoid. We prove that (1) the ring [[R<sup>(</sup>S.≤]] of generalized power series is a PP-ring if and only if R is a PP-ring and every S-indexed subset C of B(R) (the set of all idempotents of R) has a least upper bound in B(R). and (2) if (S. ≤) also satisfies the condition that 0≤s for any s∈S, then the ring [[R<sup>(</sup>S.≤]] is weakly PP if and only if R is weakly PP.
文摘In this paper a connective study of Gould's annihilation coefficients and Abel-Gontscharoff polynomials is presented. It is shown that Gould's annihilation coefficients and Abel-Gontscharoff polynomials are actually equivalent to each other under certain linear substitutions for the variables. Moreover, a pair of related expansion formulas involving Gontscharoff s remainder and a new form of it are demonstrated, and also illustrated with several examples.
文摘Let (S, ≤) be a strictly totally ordered monoid, and M and N be left R modules. We show the following results: (1) If (S, ≤) is finitely generated and satisfies the condition that 0≤S for any s ∈S, then Epi([[RS,≤]][[MS,≤]]) = Epi([[RS,≤]][[NS,≤]]) if and only if Epi(M) = Epi(N); (2) If (S,≤) is artinian, then Mono([[RS,≤]][MS,≤])= Mono([[RS,≤]][NS,≤]) if and only if Mono(M) = Mono(N).
基金the National Natural Science Foundation of China (No.10171082) the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministry of Education of China and NWNU-KJCXGC212.
文摘This paper is motivated by S. Park [10] in which the injective cover of left R[x]- module M[x? ] of inverse polynomials over a left R-module M was discussed. The 1 author considers the ?-covers of modules and shows that if η : P ?→ M is an ?- cover of M, then [ηS, ] : [PS, ] ?→ [MS, ] is an [?S, ]-cover of left [[RS, ]]-module ≤ ≤ ≤ ≤ ≤ [MS, ], where ? is a class of left R-modules and [MS, ] is the left [[RS, ]]-module of ≤ ≤ ≤ generalized inverse polynomials over a left R-module M. Also some properties of the injective cover of left [[RS, ]]-module [MS, ] are discussed. ≤
基金the National Natural Science Foundation of China (No.10961021)the Teaching and Research Award Program for Outsanding Young Teachers in Higher Education Institutions of Ministry of Education(No.NCET-02-080)
文摘Let (S,≤) be a strictly totally ordered monoid which is also artinian, and R a right noetherian ring. Assume that M is a finitely generated right R-module and N is a left Rmodule. Denote by [[MS,≤]] and [NS,≤] the module of generalized power series over M, and the generalized Macaulay-Northcott module over N, respectively. Then we show that there exists an isomorphism of Abelian groups:Tori[[ RS,≤]]([[MS,≤]],[NS,≤])≌ s∈S ToriR (M,N).