Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monito...Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.展开更多
The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersource...The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersources in Guangdong, the power sources construction scale and its structure are studied and analyzed in detail byusing Generation Expansion Software Package (GESP). The future development of Guangdong electric power sourcesunder the new situation of "Power from West to East" is studied as well.[展开更多
The distribution substation planning is faced with numerous uncertainties so that the planning result can only be a“rough outline,”and the problem of determining the planning period arises.On the basis of the assess...The distribution substation planning is faced with numerous uncertainties so that the planning result can only be a“rough outline,”and the problem of determining the planning period arises.On the basis of the assessment of uncertainties in distribution planning,a specific approach to determine the planning period of a distribution substation based on acceptable errors is proposed,indicating that the load forecast error is the key factor to affect the planning period.In order to provide a clearer understanding of this paper’s primary objective,the proposed approach is applied to determining the planning period of a power supply radius optimization(PSRO)model in distribution substation planning.Finally,an example is illustrated which validates the suggested approach of this paper.展开更多
文摘Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.
文摘The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersources in Guangdong, the power sources construction scale and its structure are studied and analyzed in detail byusing Generation Expansion Software Package (GESP). The future development of Guangdong electric power sourcesunder the new situation of "Power from West to East" is studied as well.[
基金supported by National Natural Science Foundation of China under Grant 51777121.
文摘The distribution substation planning is faced with numerous uncertainties so that the planning result can only be a“rough outline,”and the problem of determining the planning period arises.On the basis of the assessment of uncertainties in distribution planning,a specific approach to determine the planning period of a distribution substation based on acceptable errors is proposed,indicating that the load forecast error is the key factor to affect the planning period.In order to provide a clearer understanding of this paper’s primary objective,the proposed approach is applied to determining the planning period of a power supply radius optimization(PSRO)model in distribution substation planning.Finally,an example is illustrated which validates the suggested approach of this paper.