The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
This work aims at exploring the effects of the interconnection between isolated electric power systems upon some important aspects such as enhancing reliability levels along with reducing installation and operation co...This work aims at exploring the effects of the interconnection between isolated electric power systems upon some important aspects such as enhancing reliability levels along with reducing installation and operation costs. To discern the advantages associated with this study, the developed methodology has been applied to three existing power systems in the northern region of the Kingdom of Saudi Arabia presently within the concession domain of the Saudi Electric Company (SEC). These systems have been established to meet the present loads and to withstand future electrical demands for a period of time before additional generation and transmission reinforcements are needed. In this work, reliability measures have been utilized to determine the period that these systems can fulfill the present and future loads without affecting the reliability levels and the threshold that an additional capacity should be added to maintain those required reliability levels. In application to the reliability criteria, technical, operational and economic advantages can be realized, i.e., higher reliability levels and lower installation and operation costs after the proposed interconnection between these selected isolated power systems take place.展开更多
Optimization and placement of spinning reserve is an important issue in power system planning and operation. Systematic way for security assessment of operating reserve needs to study. A security assessment index syst...Optimization and placement of spinning reserve is an important issue in power system planning and operation. Systematic way for security assessment of operating reserve needs to study. A security assessment index system for operating reserve in large interconnected power grids is presented in this paper. Firstly, classification and determination methods of operating reserve at home and abroad are investigated, and operating reserve is divided into transient state operating reserve and quasi-steady state operating reserve from the view of security assessment. Secondly, assessment indexes and optimization methods for transient state operating reserve are studied. Thirdly, optimization model, deterministic and probabilistic optimization methods for quasi-steady state operating reserve are explored. Finally, some principles for determination of operating reserve are suggested, and a security assessment index system is put forward. The proposed index system, considering both transient and quasi-steady state, both deterministic and probabilistic methods, provides a systematic way to assessment and arrangement of operating reserve.展开更多
The problem of power system planning, due to its complexity and dimensionality, is one of the most challenging problems facing the electric power industry in developing as well as developed countries. In planning phas...The problem of power system planning, due to its complexity and dimensionality, is one of the most challenging problems facing the electric power industry in developing as well as developed countries. In planning phase, two of the most important decision-making parameters are the reliability and costs. The latter includes both system investment costs and outages costs. In this paper, these parameters are described and the interrelation between them is evaluated. Some previous approaches and developed techniques will he applied to a particular planning problem in a developing country and some aspects having a significant impact on the decision making process in the planning phase will be considered.展开更多
针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的...针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的含风电互联电力系统LFC闭环模型。其次,在时间乘误差绝对值积分(integral of time multiplied absolute error, ITAE)性能指标的目标函数中考虑了区域控制器的输出信号偏差,对优化目标函数进行改进。采用性能优良的多元宇宙优化(multi-verse optimizer, MVO)算法先计算后验证的思路,寻优获得最优PID控制器参数。最后,以两区域4机组互联电力LFC系统为例,仿真验证了基于MVO算法结合改进目标函数所获得的PID控制器,比基于MVO算法所获得的PID控制器,对阶跃负荷扰动、随机负荷扰动、风电功率偏差扰动以及系统的参数变化,具有相对较好的鲁棒性能。并且,对控制器参数也具有相对较好的非脆弱性指标。展开更多
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.
文摘This work aims at exploring the effects of the interconnection between isolated electric power systems upon some important aspects such as enhancing reliability levels along with reducing installation and operation costs. To discern the advantages associated with this study, the developed methodology has been applied to three existing power systems in the northern region of the Kingdom of Saudi Arabia presently within the concession domain of the Saudi Electric Company (SEC). These systems have been established to meet the present loads and to withstand future electrical demands for a period of time before additional generation and transmission reinforcements are needed. In this work, reliability measures have been utilized to determine the period that these systems can fulfill the present and future loads without affecting the reliability levels and the threshold that an additional capacity should be added to maintain those required reliability levels. In application to the reliability criteria, technical, operational and economic advantages can be realized, i.e., higher reliability levels and lower installation and operation costs after the proposed interconnection between these selected isolated power systems take place.
文摘Optimization and placement of spinning reserve is an important issue in power system planning and operation. Systematic way for security assessment of operating reserve needs to study. A security assessment index system for operating reserve in large interconnected power grids is presented in this paper. Firstly, classification and determination methods of operating reserve at home and abroad are investigated, and operating reserve is divided into transient state operating reserve and quasi-steady state operating reserve from the view of security assessment. Secondly, assessment indexes and optimization methods for transient state operating reserve are studied. Thirdly, optimization model, deterministic and probabilistic optimization methods for quasi-steady state operating reserve are explored. Finally, some principles for determination of operating reserve are suggested, and a security assessment index system is put forward. The proposed index system, considering both transient and quasi-steady state, both deterministic and probabilistic methods, provides a systematic way to assessment and arrangement of operating reserve.
文摘The problem of power system planning, due to its complexity and dimensionality, is one of the most challenging problems facing the electric power industry in developing as well as developed countries. In planning phase, two of the most important decision-making parameters are the reliability and costs. The latter includes both system investment costs and outages costs. In this paper, these parameters are described and the interrelation between them is evaluated. Some previous approaches and developed techniques will he applied to a particular planning problem in a developing country and some aspects having a significant impact on the decision making process in the planning phase will be considered.
文摘针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的含风电互联电力系统LFC闭环模型。其次,在时间乘误差绝对值积分(integral of time multiplied absolute error, ITAE)性能指标的目标函数中考虑了区域控制器的输出信号偏差,对优化目标函数进行改进。采用性能优良的多元宇宙优化(multi-verse optimizer, MVO)算法先计算后验证的思路,寻优获得最优PID控制器参数。最后,以两区域4机组互联电力LFC系统为例,仿真验证了基于MVO算法结合改进目标函数所获得的PID控制器,比基于MVO算法所获得的PID控制器,对阶跃负荷扰动、随机负荷扰动、风电功率偏差扰动以及系统的参数变化,具有相对较好的鲁棒性能。并且,对控制器参数也具有相对较好的非脆弱性指标。