:A new accurate algorithms based on mathematical modeling of two parallel transmissions lines system(TPTLS)as influenced by the mutual effect to determine the fault location is discussed in this work.The distance rela...:A new accurate algorithms based on mathematical modeling of two parallel transmissions lines system(TPTLS)as influenced by the mutual effect to determine the fault location is discussed in this work.The distance relay measures the impedance to the fault location which is the positive-sequence.The principle of summation the positive-,negative-,and zero-sequence voltages which equal zero is used to determine the fault location on the TPTLS.Also,the impedance of the transmission line to the fault location is determined.These algorithms are applied to single-line-to-ground(SLG)and double-line-to-ground(DLG)faults.To detect the fault location along the transmission line,its impedance as seen by the distance relay is determined to indicate if the fault is within the relay’s reach area.TPTLS under study are fed from one-and both-ends.A schematic diagrams are obtained for the impedance relays to determine the fault location with high accuracy.展开更多
A method used for determining the number of equivalent π sections oftransmission line model according to the frequency range of interest and the model accura-cy defined herein is proposed.Factors influencing the disc...A method used for determining the number of equivalent π sections oftransmission line model according to the frequency range of interest and the model accura-cy defined herein is proposed.Factors influencing the discrepancies between continuous ordistributed parameter and multiple π or lumped parameter models are discussed.Generalconclusions concerning the π section lengths of line models used in transient stability,faulttransient and switching over-voltage studies are drawn.Time-domain simulation resultsconfirm the effectiveness of this method.展开更多
The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques...The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques are encumbered with sophisticated transformations, which weaken the techniques. Power loss minimization is crucial to the efficient design and operation of power transmission lines. Minimization of losses is one way to meet steady grid supply, especially at peak demand. Thus, this paper has presented a gradient technique to obtain optimal variables and values from the power loss model, which efficiently minimizes power losses by modifying the traditional power loss model that combines Ohm and Corona losses. Optimality tests showed that the unmodified model does not support the minimization of power losses on transmission lines as the Hessian matrix portrayed the maximization of power losses. However, the modified model is consistent with the gradient method of optimization, which yielded optimum variables and values from the power loss model developed in this study. The unmodified (modified) models for Bujagali-Kawanda 220 kV and Masaka West-Mbarara North 132 kV transmission lines in Uganda showed maximum power losses of 0.406 (0.391) and 0.452 (0.446) kW/km/phase respectively. These results indicate that the modified model is superior to the unmodified model in minimizing power losses in the transmission lines and should be implemented for the efficient design and operation of power transmission lines within and outside Uganda for the same transmission voltages.展开更多
With the continuous growth of signal frequency and package density, discontinuity of the high-frequency interconnection in 3 D micro/nano integration becomes unavoidable, which results in serious signal integrity prob...With the continuous growth of signal frequency and package density, discontinuity of the high-frequency interconnection in 3 D micro/nano integration becomes unavoidable, which results in serious signal integrity problems. Traditional interconnection design schemes, such as termination and shielding/isolation, cannot meet the requirements under the unified constraints of specific cost, space occupancy, and performance. In this study, a transmission line design optimization scheme based on the segmental transmission line(STL) methodology is proposed. The genetic algorithm is used to select the optimal segment structure parameters of the transmission line to construct an STL with satisfying transmission performance or meet the specific signal amplitude adjustment requirements. This scheme can be adapted to various signal transmission scenarios to significantly improve the signal loss caused by reflection or other negative electromagnetic factors and meet the requirements for the modeling of discontinuous transmission lines. The simulation results show that this scheme is effective in the design scenario of performance improvement or equivalent modeling of discontinuous transmission lines and has significant advantages in circuit area reduction.展开更多
To study the Very Fast Transient Over-voltage (VFTO) distribution in transformer windings in gas insulated substation (GIS), a systematic methodology based on S-parameters is presented for establishing high-frequency ...To study the Very Fast Transient Over-voltage (VFTO) distribution in transformer windings in gas insulated substation (GIS), a systematic methodology based on S-parameters is presented for establishing high-frequency model of transformer windings. Firstly, voltage transfer functions are derived from S-parameters which are calculated or measured from transformer windings. Secondly, voltage transfer functions are fitted with rational functions by the vector fitting method and then the rational transfer functions are order-reduced by optimal Pade-approximation algorithm. Lastly, the resultant voltage transfer functions are synthesized by network technology. Computational results are consistent with simulation results of Electromagnetic Transient Program (EMTP) and confirm the feasibility and validity of proposed methodology.展开更多
This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dy...This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dynamic load models on system stability is also studied. The steady-state and dynamic stability simulation results of a 39 bus system for constant line impedance (the traditional simulation practice) are compared to the results with estimated, but realistic, temperature varied line impedances using PSLF (positive sequence load flow) software. The modulated line impedances will affect the thermal loading levels and voltage profiles of buses under steady state response, while the dynamic results will show improved damping in electro-mechanical oscillations at generator buses.展开更多
Output-pulse shaping capability of a linear transformer driver (LTD) module under different conditions is studied, by conducting the whole circuit model simulation by using the PSPICE code. Results indicate that a h...Output-pulse shaping capability of a linear transformer driver (LTD) module under different conditions is studied, by conducting the whole circuit model simulation by using the PSPICE code. Results indicate that a higher impedance profile of the internal transmission line would lead to a wider adjustment range for the output current rise time and a narrower adjustment range for the current peak. The number of cavities in series has a positive effect on the output- pulse shaping capability of LTD. Such an improvement in the output-pulse shaping capability can primarily be ascribed to the increment in the axial electric length of LTD. For a triggering time interval longer than the time taken by a pulse to propagate through the length of one cavity, the output parameters of LTD could be improved significantly. The present insulating capability of gas switches and other elements in the LTD cavities may only tolerate a slightly longer deviation in the triggering time interval. It is feasible for the LTD module to reduce the output current rise time, though it is not useful to improve the peak power effectively.展开更多
A whole circuit model of a linear transformer drivers (LTD) module composed of 60 cavities in series was developed in the software PSPICE to study the influence of switching jitter on the operational performances of...A whole circuit model of a linear transformer drivers (LTD) module composed of 60 cavities in series was developed in the software PSPICE to study the influence of switching jitter on the operational performances of LTDs. In the model, each brick in each cavity is capable of operating with jitter in its switch. Additionally, the manner of triggering cables entering into cavities was considered. The performances of the LTD module operating with three typical cavity-triggering sequences were simulated and the simulation results indicate that switching jitter affects slightly the peak and starting time of the output current pulse. However, the enhancement in switching jitter would significantly lengthen the rise time of the output current pulse. Without considering other factors, a jitter lower than 10 ns may be necessary for the switches in the LTD module to provide output current parameters with an acceptable deviation.展开更多
电力监控系统环境中存在过多噪声因素干扰,导致通信效率和质量低。为此,提出一种基于传输控制协议/网际协议(transmission control protocol/internet protocol,TCP/IP)与关联规则的多线程通信算法。将背景噪声看作电力监控信号的突变现...电力监控系统环境中存在过多噪声因素干扰,导致通信效率和质量低。为此,提出一种基于传输控制协议/网际协议(transmission control protocol/internet protocol,TCP/IP)与关联规则的多线程通信算法。将背景噪声看作电力监控信号的突变现象,查找回应突变函数的信号值,利用谐波分离算法,去除背景噪声。根据不同线程的传输特点,采用TCP/IP协议建立通信程序包,分别设置句柄、终止、挂起以及执行函数,为不同线程的通信数据,匹配不同的通信协议。试验结果证明:对电力监控系统源设备的传输信号多线程通信时,通信信号波频变化最为平稳,在0~2000 s的采样区间内,未出现传输为0现象;对背景噪声去噪后,波形相比原始信号变化明显较为稳定,没有出现过高或过低的幅值变化。所提方法通信信号表达平稳、效率较高,对原始信号的保留效果较好,去噪能力很强。展开更多
There are some difficulties in using multi-transmission-line (MTL) model for wide band modeling of whole windings of the large power transformer. In this paper, the normalized MTL model is firstly de- rived, with whic...There are some difficulties in using multi-transmission-line (MTL) model for wide band modeling of whole windings of the large power transformer. In this paper, the normalized MTL model is firstly de- rived, with which not only the difficulty of modeling windings with different turn-lengths using MTL can be solved, but also the model can be extended to the modeling of the multi-winding transformer. Secondly, both MTL model and the lumped circuit model on turn basis are mathematically compared in validation of the frequency range and it is pointed out that the lumped circuit model on turn basis is generally valid below 2.5 MHz for EHV and UHV power transformers. Finally, based on the MTL equations, a novel lumped circuit model is derived and it is shown that the valid frequency range of the new circuit is extended to about 4 MHz for modeling large EHV and UHV power transformer windings.展开更多
This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly f...This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching.展开更多
文摘:A new accurate algorithms based on mathematical modeling of two parallel transmissions lines system(TPTLS)as influenced by the mutual effect to determine the fault location is discussed in this work.The distance relay measures the impedance to the fault location which is the positive-sequence.The principle of summation the positive-,negative-,and zero-sequence voltages which equal zero is used to determine the fault location on the TPTLS.Also,the impedance of the transmission line to the fault location is determined.These algorithms are applied to single-line-to-ground(SLG)and double-line-to-ground(DLG)faults.To detect the fault location along the transmission line,its impedance as seen by the distance relay is determined to indicate if the fault is within the relay’s reach area.TPTLS under study are fed from one-and both-ends.A schematic diagrams are obtained for the impedance relays to determine the fault location with high accuracy.
文摘A method used for determining the number of equivalent π sections oftransmission line model according to the frequency range of interest and the model accura-cy defined herein is proposed.Factors influencing the discrepancies between continuous ordistributed parameter and multiple π or lumped parameter models are discussed.Generalconclusions concerning the π section lengths of line models used in transient stability,faulttransient and switching over-voltage studies are drawn.Time-domain simulation resultsconfirm the effectiveness of this method.
文摘The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques are encumbered with sophisticated transformations, which weaken the techniques. Power loss minimization is crucial to the efficient design and operation of power transmission lines. Minimization of losses is one way to meet steady grid supply, especially at peak demand. Thus, this paper has presented a gradient technique to obtain optimal variables and values from the power loss model, which efficiently minimizes power losses by modifying the traditional power loss model that combines Ohm and Corona losses. Optimality tests showed that the unmodified model does not support the minimization of power losses on transmission lines as the Hessian matrix portrayed the maximization of power losses. However, the modified model is consistent with the gradient method of optimization, which yielded optimum variables and values from the power loss model developed in this study. The unmodified (modified) models for Bujagali-Kawanda 220 kV and Masaka West-Mbarara North 132 kV transmission lines in Uganda showed maximum power losses of 0.406 (0.391) and 0.452 (0.446) kW/km/phase respectively. These results indicate that the modified model is superior to the unmodified model in minimizing power losses in the transmission lines and should be implemented for the efficient design and operation of power transmission lines within and outside Uganda for the same transmission voltages.
基金supported by the National Natural Science Foundation of China [Grant No. 61674016]Beijing Municipality Excellent Talents Training Assistance (Young Backbone Individuals) Project [No. 2017000020124G071]in part by the State Key Development Program for Basic Research of China (973 Program) [Grant 2015CB057201]。
文摘With the continuous growth of signal frequency and package density, discontinuity of the high-frequency interconnection in 3 D micro/nano integration becomes unavoidable, which results in serious signal integrity problems. Traditional interconnection design schemes, such as termination and shielding/isolation, cannot meet the requirements under the unified constraints of specific cost, space occupancy, and performance. In this study, a transmission line design optimization scheme based on the segmental transmission line(STL) methodology is proposed. The genetic algorithm is used to select the optimal segment structure parameters of the transmission line to construct an STL with satisfying transmission performance or meet the specific signal amplitude adjustment requirements. This scheme can be adapted to various signal transmission scenarios to significantly improve the signal loss caused by reflection or other negative electromagnetic factors and meet the requirements for the modeling of discontinuous transmission lines. The simulation results show that this scheme is effective in the design scenario of performance improvement or equivalent modeling of discontinuous transmission lines and has significant advantages in circuit area reduction.
基金the I mportant National Science Foundation of Hebei Province (E2006001036)Science and Tech-nology Project of Hebei Province (072156167)
文摘To study the Very Fast Transient Over-voltage (VFTO) distribution in transformer windings in gas insulated substation (GIS), a systematic methodology based on S-parameters is presented for establishing high-frequency model of transformer windings. Firstly, voltage transfer functions are derived from S-parameters which are calculated or measured from transformer windings. Secondly, voltage transfer functions are fitted with rational functions by the vector fitting method and then the rational transfer functions are order-reduced by optimal Pade-approximation algorithm. Lastly, the resultant voltage transfer functions are synthesized by network technology. Computational results are consistent with simulation results of Electromagnetic Transient Program (EMTP) and confirm the feasibility and validity of proposed methodology.
文摘This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dynamic load models on system stability is also studied. The steady-state and dynamic stability simulation results of a 39 bus system for constant line impedance (the traditional simulation practice) are compared to the results with estimated, but realistic, temperature varied line impedances using PSLF (positive sequence load flow) software. The modulated line impedances will affect the thermal loading levels and voltage profiles of buses under steady state response, while the dynamic results will show improved damping in electro-mechanical oscillations at generator buses.
基金supported by National Natural Science Foundation of China (Nos. 50637010, 51077111)the State Key Laboratory of Electrical Insulation and Power Equipment of Xi'an Jiaotong University of China (EIPE 09207)
文摘Output-pulse shaping capability of a linear transformer driver (LTD) module under different conditions is studied, by conducting the whole circuit model simulation by using the PSPICE code. Results indicate that a higher impedance profile of the internal transmission line would lead to a wider adjustment range for the output current rise time and a narrower adjustment range for the current peak. The number of cavities in series has a positive effect on the output- pulse shaping capability of LTD. Such an improvement in the output-pulse shaping capability can primarily be ascribed to the increment in the axial electric length of LTD. For a triggering time interval longer than the time taken by a pulse to propagate through the length of one cavity, the output parameters of LTD could be improved significantly. The present insulating capability of gas switches and other elements in the LTD cavities may only tolerate a slightly longer deviation in the triggering time interval. It is feasible for the LTD module to reduce the output current rise time, though it is not useful to improve the peak power effectively.
基金supported partly by National Natural Science Foundation of China(Nos.50637010,51077111)partly by the State Key Laboratory of Electrical Insulation and Power Equipment of Xi'an Jiaotong University of China(EIPE09207)
文摘A whole circuit model of a linear transformer drivers (LTD) module composed of 60 cavities in series was developed in the software PSPICE to study the influence of switching jitter on the operational performances of LTDs. In the model, each brick in each cavity is capable of operating with jitter in its switch. Additionally, the manner of triggering cables entering into cavities was considered. The performances of the LTD module operating with three typical cavity-triggering sequences were simulated and the simulation results indicate that switching jitter affects slightly the peak and starting time of the output current pulse. However, the enhancement in switching jitter would significantly lengthen the rise time of the output current pulse. Without considering other factors, a jitter lower than 10 ns may be necessary for the switches in the LTD module to provide output current parameters with an acceptable deviation.
文摘电力监控系统环境中存在过多噪声因素干扰,导致通信效率和质量低。为此,提出一种基于传输控制协议/网际协议(transmission control protocol/internet protocol,TCP/IP)与关联规则的多线程通信算法。将背景噪声看作电力监控信号的突变现象,查找回应突变函数的信号值,利用谐波分离算法,去除背景噪声。根据不同线程的传输特点,采用TCP/IP协议建立通信程序包,分别设置句柄、终止、挂起以及执行函数,为不同线程的通信数据,匹配不同的通信协议。试验结果证明:对电力监控系统源设备的传输信号多线程通信时,通信信号波频变化最为平稳,在0~2000 s的采样区间内,未出现传输为0现象;对背景噪声去噪后,波形相比原始信号变化明显较为稳定,没有出现过高或过低的幅值变化。所提方法通信信号表达平稳、效率较高,对原始信号的保留效果较好,去噪能力很强。
文摘There are some difficulties in using multi-transmission-line (MTL) model for wide band modeling of whole windings of the large power transformer. In this paper, the normalized MTL model is firstly de- rived, with which not only the difficulty of modeling windings with different turn-lengths using MTL can be solved, but also the model can be extended to the modeling of the multi-winding transformer. Secondly, both MTL model and the lumped circuit model on turn basis are mathematically compared in validation of the frequency range and it is pointed out that the lumped circuit model on turn basis is generally valid below 2.5 MHz for EHV and UHV power transformers. Finally, based on the MTL equations, a novel lumped circuit model is derived and it is shown that the valid frequency range of the new circuit is extended to about 4 MHz for modeling large EHV and UHV power transformer windings.
文摘This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching.