This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave mo...This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.展开更多
Among the wave energy converters (WECs), oscillating buoy is a promising type for wave energy development in offshore area. Conventional single-freedom oscillating buoy WECs with linear power take-off (PTO) system are...Among the wave energy converters (WECs), oscillating buoy is a promising type for wave energy development in offshore area. Conventional single-freedom oscillating buoy WECs with linear power take-off (PTO) system are less efficient under off-resonance conditions and have a narrow power capture bandwidth. Thus, a multi-freedom WEC with a nonlinear PTO system is proposed. This study examines a multi-freedom WEC with 3 degrees of freedom: surge, heave and pitch. Three different PTO systems (velocity-square, snap through, and constant PTO systems) and a traditional linear PTO system are applied to the WEC. A time-domain model is established using linear potential theory and Cummins equation. The kinematic equation is numerically calculated with the fourth-order Runge–Kutta method. The optimal average output power of the PTO systems in all degrees of freedom are obtained and compared. Other parameters of snap through PTO are also discussed in detail. Results show that according to the power capture performance, the order of the PTO systems from the best to worst is snap through PTO, constant PTO, linear PTO and velocity-square PTO. The resonant frequency of the WEC can be adjusted to the incident wave frequency by choosing specific parameters of the snap through PTO. Adding more DOFs can make the WEC get a better power performance in more wave frequencies. Both the above two methods can raise the WEC’s power capture performance significantly.展开更多
The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-ab...The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-absorbing floating body rotates around the hinge point, and the wave energy can be converted into kinetic energy. In this paper, the power take-off system of " Sharp Eagle Ⅱ” wave energy converter (the second generation of " Sharp Eagle”) was studied, which adopts the hydraulic type power take-off system. The 0-1 power generation mode was applied in this system to make the " Sharp Eagle Ⅱ” operate under various wave conditions. The principle of power generation was introduced in detail, and the power take-off system was simulated. Three groups of different movement period inputs were used to simulate three kinds of wave conditions, and the simulation results were obtained under three different working conditions. In addition, the prototype of " Sharp Eagle Ⅱ” wave energy converter was tested on land and in real sea conditions. The experimental data have been collected, and the experimental data and simulation results were compared and validated. This work has laid a foundation for the design and application of the following " Sharp Eagle” series of devices.展开更多
This study proposed a wave power system with two coaxial floating cylinders of different diameters and drafts.Wavebob’s conceptual design has been adopted in the wave power system.In this study,a basic analysis of th...This study proposed a wave power system with two coaxial floating cylinders of different diameters and drafts.Wavebob’s conceptual design has been adopted in the wave power system.In this study,a basic analysis of the wave energy extraction by the relative motion between two floats is presented.The maximum power absorption was studied theoretically under regular wave conditions,and the effects of both linear and constant damping forces on the power take-off(PTO)were investigated.A set of dynamic equations describing the floats’displacement under regular waves and different PTOs are established.A time-domain numerical model is developed,considering the PTO parameter and viscous damping,and the optimal PTO damping and output power are obtained.With the analysis of estimating the maximum power absorption,a new estimation method called Power Capture Function(PCF)is proposed and constructed,which can be used to predict the power capture under both linear and constant PTO forces.Based on this,energy extraction is analyzed and optimized.Finally,the performance characteristics of the two-body power system are concluded.展开更多
In the past few decades, world energy consumption grew considerably. Regarding this fact, wave energy should not be discarded as a valid alternative for the production of electricity. Devices suitable to harness this ...In the past few decades, world energy consumption grew considerably. Regarding this fact, wave energy should not be discarded as a valid alternative for the production of electricity. Devices suitable to harness this kind of renewable energy source and turn it into electricity are not yet commercially competitive. The work described in this paper aims to contribute to this field of research. It is focused on the design and construction of robust, simple and affordable hydraulic Power Take-Off using hydraulic commercial components.展开更多
The latching control represents an attractive alternative to increase the power absorption of wave energy converters(WECs)by tuning the phase of oscillator velocity to the wave excitation phase.However,increasing the ...The latching control represents an attractive alternative to increase the power absorption of wave energy converters(WECs)by tuning the phase of oscillator velocity to the wave excitation phase.However,increasing the amplitude of motion of the floating body is not the only challenge to obtain a good performance of the WEC.It also depends on the efficiency of the power take-off system(PTO).This study aims to address the actual power performance and operation of a heaving point absorber with a direct mechanical drive PTO system controlled by latching.The PTO characteristics,such as the gear ratio,the flywheel inertia,and the electric generator,are analyzed in the WEC performance.Three cylindrical point absorbers are also considered in the present study.A wave-to-wire model is developed to simulate the coupled hydro-electro-mechanical system in regular waves.The wave energy converter(WEC)performance is analyzed using the potential linear theory but considering the viscous damping effect according to the Morison equation to avoid the overestimated responses of the linear theory near resonance when the latching control system is applied.The latching control system increases the mean power.However,the increase is not significant if the parameters that characterize the WEC provide a considerable mean power.The performance of the proposed mechanical power take-off depends on the gear ratio and flywheel.However,the gear ratio shows a more significant influence than the flywheel inertia.The operating range of the generator and the diameter/draft ratio of the buoy also influence the PTO performance.展开更多
A simple approach is described to estimate the wave power absorption potential of submerged devices known to cause wave focusing and flow enhancement. In particular, the presence of a flow-through power take-off (PTO...A simple approach is described to estimate the wave power absorption potential of submerged devices known to cause wave focusing and flow enhancement. In particular, the presence of a flow-through power take-off (PTO) system, such as low-head turbines, can be accounted for. The wave radiation characteristics of an appropriately selected Lagrangian element (LE) in the fluid domain are first determined. In the limit of a vanishing mass, the LE reduces to a patch of distributed normal dipoles. The hydrodynamic coefficients of this virtual object are then input in a standard equation of motion where the effect of the PTO can be represented, for example, as a dashpot damping term. The process is illustrated for a class of devices recently proposed by Carter and Ertekin (2011), although in a simplified form. Favorable wave power absorption is shown for large ratios of the LE wave radiation coefficient over the LE added mass coefficient. Under optimal conditions, the relative flow reduction from the PTO theoretically lies between 0.50 and 1 2 ≈ 0.71, with lower values corresponding to better configurations. Wave power capture widths, the sensitivity of results to PTO damping and sample spectral calculations at a typical site in Hawaiian waters are proposed to further illustrate the versatility of the method.展开更多
A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydrauli...A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydraulic power take-off system, which suits for the floating wave energy devices, includes hydraulic system and power generation system. The hydraulic control system uses a special“self-hydraulic control system”to control hydraulic system to release or save energy under the maximum and the minimum pressures. The maximum pressure is enhanced to 23 MPa, the minimum to 9 MPa. Quite a few experiments show that the recent hydraulic system is evidently improved in efficiency and reliability than our previous one, that is expected to be great significant in the research and development of our prototype about wave energy conversion.展开更多
Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters(WECs)...Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters(WECs). Thus, renewable energy converters connected to DC grid is a new subject. The characteristics of WECs are very important to the connection technology of HPTO type WECs and DC nano grid. Hydraulic power take-off system(HPTO) is the core unit of the largest category of WECs, with the functions of supplying suitable damping for a WEC to absorb wave energy, and converting captured wave energy to electricity. The HPTO is divided into a hydraulic energy storage system(HESS) and a hydraulic power generation system(HPGS). A primary numerical model for the HPGS is established in this paper. Three important basic characteristics of the HPGS are deduced, which reveal how the generator load determines the HPGS rotation rate. Therefore, the connector of HPTO type WEC and DC nano grid would be an uncontrollable rectifier with high reliability, also would be a controllable power converter with high efficiency, such as interleaved boost converter-IBC. The research shows that it is very flexible to connect to DC nano grid for WECs, but bypass resistance loads are indispensable for the security of WECs.展开更多
In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional p...In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.展开更多
The double-body heave wave energy converter(WEC)is one of the most conducive devices to absorb the wave energy from relative motion while the law of which is not well understood.This paper makes an in-depth study on t...The double-body heave wave energy converter(WEC)is one of the most conducive devices to absorb the wave energy from relative motion while the law of which is not well understood.This paper makes an in-depth study on this wave energy converter,by means of the combination of theoretical analysis and physical model experiment.The hydrodynamic characteristics and energy capture of the double-buoy under constant and linear Power Take-Off(PTO)damping are investigated.Influences of absolute mass and mass ratio are discussed in the theoretical model.Relative displacement amplitude and average power output are tested in the experiment to analyze the effect of the wave period and outer buoy’s mass,while the capture width ratio(CWR)is also calculated.Results show that the wave period and mass of the buoys have a significant effect on the converter.Different forms of PTO damping have no influence on the optimal wave period and mass ratio of this device.It is recommended to select the double-buoy converter with a mass ratio of 0.80 and to place it in an area with the frequent wave period close to the natural period of the outer buoy to achieve the optimal energy capture.展开更多
Wave energy has gained its popularity in recent decades due to the vast amount of untapped wave energy resources.There are numerous types of wave energy convertor(WEC)being proposed and to be economically viable,vario...Wave energy has gained its popularity in recent decades due to the vast amount of untapped wave energy resources.There are numerous types of wave energy convertor(WEC)being proposed and to be economically viable,various means to enhance the power generation from WECs have been studied and investigated.In this paper,a novel pontoon-type WEC,which is formed by multiple plate-like modules connected by hinges,are considered.The power enhancement of this pontoon-type WEC is achieved by allowing certain level of structural deformation and by utilizing a series of optimal variable power take-off(PTO)system.The wave energy is converted into useful electricity by attaching the PTO systems on the hinge connectors such that the mechanical movements of the hinges could produce electricity.In this paper,various structural rigidity of the interconnected modules are considered by changing the material Young’s modulus in order to investigate its impact on the power enhancement.In addition,the genetic algorithm optimization scheme is utilized to seek for the optimal PTO damping in the variable PTO system.It is observed that under certain condition,the flexible pontoon-type WEC with lesser connection joints is more effective in generating energy as compared to its rigid counterpart with higher connection joints.It is also found that the variable PTO system is able to generate greater energy as compared to the PTO system with constant/uniform PTO damping.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51205346 and 41206074)the National High Technology Research and Development Program of China(863 Program+3 种基金Grant No.2011AA050201)Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51221004)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY12E05017)Open Foundation of the State Key Laboratory of Fluid Power Transmission and Control(Grant No.GZKF-201311)
文摘This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.
基金financially supported by the Shandong Provincial Natural Science Key Basic Program(Grant No.ZR2017ZA0202)the Qingdao Municipal Science&Technology Program(Grant No.15-8-3-7-jch)Special Project for Marine Renewable Energy(Grant No.GHME2016YY02)
文摘Among the wave energy converters (WECs), oscillating buoy is a promising type for wave energy development in offshore area. Conventional single-freedom oscillating buoy WECs with linear power take-off (PTO) system are less efficient under off-resonance conditions and have a narrow power capture bandwidth. Thus, a multi-freedom WEC with a nonlinear PTO system is proposed. This study examines a multi-freedom WEC with 3 degrees of freedom: surge, heave and pitch. Three different PTO systems (velocity-square, snap through, and constant PTO systems) and a traditional linear PTO system are applied to the WEC. A time-domain model is established using linear potential theory and Cummins equation. The kinematic equation is numerically calculated with the fourth-order Runge–Kutta method. The optimal average output power of the PTO systems in all degrees of freedom are obtained and compared. Other parameters of snap through PTO are also discussed in detail. Results show that according to the power capture performance, the order of the PTO systems from the best to worst is snap through PTO, constant PTO, linear PTO and velocity-square PTO. The resonant frequency of the WEC can be adjusted to the incident wave frequency by choosing specific parameters of the snap through PTO. Adding more DOFs can make the WEC get a better power performance in more wave frequencies. Both the above two methods can raise the WEC’s power capture performance significantly.
基金financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA13040202)the Special Funding Program for Marine Renewable Energy of the State Oceanic Administration(Grant No.GHME2017SF01)
文摘The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-absorbing floating body rotates around the hinge point, and the wave energy can be converted into kinetic energy. In this paper, the power take-off system of " Sharp Eagle Ⅱ” wave energy converter (the second generation of " Sharp Eagle”) was studied, which adopts the hydraulic type power take-off system. The 0-1 power generation mode was applied in this system to make the " Sharp Eagle Ⅱ” operate under various wave conditions. The principle of power generation was introduced in detail, and the power take-off system was simulated. Three groups of different movement period inputs were used to simulate three kinds of wave conditions, and the simulation results were obtained under three different working conditions. In addition, the prototype of " Sharp Eagle Ⅱ” wave energy converter was tested on land and in real sea conditions. The experimental data have been collected, and the experimental data and simulation results were compared and validated. This work has laid a foundation for the design and application of the following " Sharp Eagle” series of devices.
基金financially supported by the National Key R&D Program of China (Grant No. 2018YFB1501904)the Shandong Provincial Key R&D Program (Grant No. 2019JZZY010902)+2 种基金the National Natural Science Foundation of China (Grant No. 52071303)the Joint Project of NSFC-SD (Grant No. U1906228)the Taishan Scholars Program of Shandong Province (Grant No. ts20190914)
文摘This study proposed a wave power system with two coaxial floating cylinders of different diameters and drafts.Wavebob’s conceptual design has been adopted in the wave power system.In this study,a basic analysis of the wave energy extraction by the relative motion between two floats is presented.The maximum power absorption was studied theoretically under regular wave conditions,and the effects of both linear and constant damping forces on the power take-off(PTO)were investigated.A set of dynamic equations describing the floats’displacement under regular waves and different PTOs are established.A time-domain numerical model is developed,considering the PTO parameter and viscous damping,and the optimal PTO damping and output power are obtained.With the analysis of estimating the maximum power absorption,a new estimation method called Power Capture Function(PCF)is proposed and constructed,which can be used to predict the power capture under both linear and constant PTO forces.Based on this,energy extraction is analyzed and optimized.Finally,the performance characteristics of the two-body power system are concluded.
文摘In the past few decades, world energy consumption grew considerably. Regarding this fact, wave energy should not be discarded as a valid alternative for the production of electricity. Devices suitable to harness this kind of renewable energy source and turn it into electricity are not yet commercially competitive. The work described in this paper aims to contribute to this field of research. It is focused on the design and construction of robust, simple and affordable hydraulic Power Take-Off using hydraulic commercial components.
基金The authors acknowledge the support from the Brazilian Research Council(CNPq),contract numbers 380950/2018-9(INEOF-National Institute for Ocean and River Energy)and 305657/2017-8,respectivelySpecial thanks to FAPERJ for the support of the wave energy research at the Subsea Technology Lab(COPPE),contract number E-26/202.600/2019。
文摘The latching control represents an attractive alternative to increase the power absorption of wave energy converters(WECs)by tuning the phase of oscillator velocity to the wave excitation phase.However,increasing the amplitude of motion of the floating body is not the only challenge to obtain a good performance of the WEC.It also depends on the efficiency of the power take-off system(PTO).This study aims to address the actual power performance and operation of a heaving point absorber with a direct mechanical drive PTO system controlled by latching.The PTO characteristics,such as the gear ratio,the flywheel inertia,and the electric generator,are analyzed in the WEC performance.Three cylindrical point absorbers are also considered in the present study.A wave-to-wire model is developed to simulate the coupled hydro-electro-mechanical system in regular waves.The wave energy converter(WEC)performance is analyzed using the potential linear theory but considering the viscous damping effect according to the Morison equation to avoid the overestimated responses of the linear theory near resonance when the latching control system is applied.The latching control system increases the mean power.However,the increase is not significant if the parameters that characterize the WEC provide a considerable mean power.The performance of the proposed mechanical power take-off depends on the gear ratio and flywheel.However,the gear ratio shows a more significant influence than the flywheel inertia.The operating range of the generator and the diameter/draft ratio of the buoy also influence the PTO performance.
基金Unsponsored(cost share)contribution to the U.S.Department of Energy through the Hawaii National Marine Renewable Energy Center(Hawaii Natural Energy Institute,University of Hawaii),Account No.6658090
文摘A simple approach is described to estimate the wave power absorption potential of submerged devices known to cause wave focusing and flow enhancement. In particular, the presence of a flow-through power take-off (PTO) system, such as low-head turbines, can be accounted for. The wave radiation characteristics of an appropriately selected Lagrangian element (LE) in the fluid domain are first determined. In the limit of a vanishing mass, the LE reduces to a patch of distributed normal dipoles. The hydrodynamic coefficients of this virtual object are then input in a standard equation of motion where the effect of the PTO can be represented, for example, as a dashpot damping term. The process is illustrated for a class of devices recently proposed by Carter and Ertekin (2011), although in a simplified form. Favorable wave power absorption is shown for large ratios of the LE wave radiation coefficient over the LE added mass coefficient. Under optimal conditions, the relative flow reduction from the PTO theoretically lies between 0.50 and 1 2 ≈ 0.71, with lower values corresponding to better configurations. Wave power capture widths, the sensitivity of results to PTO damping and sample spectral calculations at a typical site in Hawaiian waters are proposed to further illustrate the versatility of the method.
基金supported by Marine Renewable Energy Funds Projects(Grant Nos.GHME2010GC01 and GHME2011BL06)
文摘A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydraulic power take-off system, which suits for the floating wave energy devices, includes hydraulic system and power generation system. The hydraulic control system uses a special“self-hydraulic control system”to control hydraulic system to release or save energy under the maximum and the minimum pressures. The maximum pressure is enhanced to 23 MPa, the minimum to 9 MPa. Quite a few experiments show that the recent hydraulic system is evidently improved in efficiency and reliability than our previous one, that is expected to be great significant in the research and development of our prototype about wave energy conversion.
基金financially supported by the Natural Science Foundation of Guangdong Province(Grant No.2015A030313717)the Chinese Ocean Renewable Energy Special Fund(Grant Nos.GHME2013ZB01,GHME2013GC01,and GHME2010GC01)Renewable Energy Key Laboratory 2013 Annual Fund of the Academy of Sciences of China(Grant No.y407j71001)
文摘Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters(WECs). Thus, renewable energy converters connected to DC grid is a new subject. The characteristics of WECs are very important to the connection technology of HPTO type WECs and DC nano grid. Hydraulic power take-off system(HPTO) is the core unit of the largest category of WECs, with the functions of supplying suitable damping for a WEC to absorb wave energy, and converting captured wave energy to electricity. The HPTO is divided into a hydraulic energy storage system(HESS) and a hydraulic power generation system(HPGS). A primary numerical model for the HPGS is established in this paper. Three important basic characteristics of the HPGS are deduced, which reveal how the generator load determines the HPGS rotation rate. Therefore, the connector of HPTO type WEC and DC nano grid would be an uncontrollable rectifier with high reliability, also would be a controllable power converter with high efficiency, such as interleaved boost converter-IBC. The research shows that it is very flexible to connect to DC nano grid for WECs, but bypass resistance loads are indispensable for the security of WECs.
文摘In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.
基金financially supported by the National Key R&D Program of China(Grant No.2018YFB1501900)the National Natural Science Foundation of China(Grant No.52071303)Shandong Provincial Key Research and Development Program(SPKR&DP-MSTIP)(Grant No.2019JZZY010902)。
文摘The double-body heave wave energy converter(WEC)is one of the most conducive devices to absorb the wave energy from relative motion while the law of which is not well understood.This paper makes an in-depth study on this wave energy converter,by means of the combination of theoretical analysis and physical model experiment.The hydrodynamic characteristics and energy capture of the double-buoy under constant and linear Power Take-Off(PTO)damping are investigated.Influences of absolute mass and mass ratio are discussed in the theoretical model.Relative displacement amplitude and average power output are tested in the experiment to analyze the effect of the wave period and outer buoy’s mass,while the capture width ratio(CWR)is also calculated.Results show that the wave period and mass of the buoys have a significant effect on the converter.Different forms of PTO damping have no influence on the optimal wave period and mass ratio of this device.It is recommended to select the double-buoy converter with a mass ratio of 0.80 and to place it in an area with the frequent wave period close to the natural period of the outer buoy to achieve the optimal energy capture.
文摘Wave energy has gained its popularity in recent decades due to the vast amount of untapped wave energy resources.There are numerous types of wave energy convertor(WEC)being proposed and to be economically viable,various means to enhance the power generation from WECs have been studied and investigated.In this paper,a novel pontoon-type WEC,which is formed by multiple plate-like modules connected by hinges,are considered.The power enhancement of this pontoon-type WEC is achieved by allowing certain level of structural deformation and by utilizing a series of optimal variable power take-off(PTO)system.The wave energy is converted into useful electricity by attaching the PTO systems on the hinge connectors such that the mechanical movements of the hinges could produce electricity.In this paper,various structural rigidity of the interconnected modules are considered by changing the material Young’s modulus in order to investigate its impact on the power enhancement.In addition,the genetic algorithm optimization scheme is utilized to seek for the optimal PTO damping in the variable PTO system.It is observed that under certain condition,the flexible pontoon-type WEC with lesser connection joints is more effective in generating energy as compared to its rigid counterpart with higher connection joints.It is also found that the variable PTO system is able to generate greater energy as compared to the PTO system with constant/uniform PTO damping.