期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
Power transfer efficiency in an air-breathing radio frequency ion thruster
1
作者 黄高煌 李宏 +1 位作者 高飞 王友年 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期430-438,共9页
Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit mission... Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency. 展开更多
关键词 radio frequency ion thruster inductively coupled plasma power transfer efficiency analytic solution
下载PDF
NOMA Empowered Energy Efficient Data Collection and Wireless Power Transfer in Space-Air-Ground Integrated Networks
2
作者 Cong Zhou Shuo Shi +1 位作者 Chenyu Wu Zhenyu Xu 《China Communications》 SCIE CSCD 2023年第8期17-31,共15页
As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT network... As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights. 展开更多
关键词 NOMA Space-Air-Ground Integrated Networks data collection wireless power transfer resource allocation trajectory optimization
下载PDF
Monte-Carlo based random passive energy beamforming for reconfigurable intelligent surface assisted wireless power transfer
3
作者 Ziyang Lu Yubin Zhao Xiaofan Li 《Digital Communications and Networks》 SCIE CSCD 2023年第3期667-676,共10页
Reconfigurable intelligent surface(RIS)employs passive beamforming to control the wireless propagation channel,which benefits the wireless communication capacity and the received energy efficiency of wireless power tr... Reconfigurable intelligent surface(RIS)employs passive beamforming to control the wireless propagation channel,which benefits the wireless communication capacity and the received energy efficiency of wireless power transfer(WPT)systems.Such beamforming schemes are classified as discrete and non-convex integer program-ming problems.In this paper,we propose a Monte-Carlo(MC)based random energy passive beamforming of RIS to achieve the maximum received power of electromagnetic(EM)WPT systems.Generally,the Gibbs sampling and re-sampling methods are employed to generate phase shift vector samples.And the sample with the maximum received power is considered the optimal solution.In order to adapt to the application scenarios,we develop two types of passive beamforming algorithms based on such MC sampling methods.The first passive beamforming uses an approximation of the integer programming as the initial sample,which is calculated based on the channel information.And the second one is a purely randomized algorithm with the only total received power feedback.The proposed methods present several advantages for RIS control,e.g.,fast convergence,easy implementation,robustness to the channel noise,and limited feedback requirement,and they are applicable even if the channel information is unknown.According to the simulation results,our proposed methods outperform other approxi-mation and genetic algorithms.With our methods,the WPT system even significantly improves the power effi-ciency in the nonline-of-sight(NLOS)environment. 展开更多
关键词 Reconfigurable intelligence surface Wireless power transfer Monte-carlo algorithm Passive beamforming Gibbs sampling
下载PDF
Computation Rate Maximization in Multi-User Cooperation-Assisted Wireless-Powered Mobile Edge Computing with OFDMA
4
作者 Xinying Wu Yejun He Asad Saleem 《China Communications》 SCIE CSCD 2023年第1期218-229,共12页
In the era of Internet of Things(Io T),mobile edge computing(MEC)and wireless power transfer(WPT)provide a prominent solution for computation-intensive applications to enhance computation capability and achieve sustai... In the era of Internet of Things(Io T),mobile edge computing(MEC)and wireless power transfer(WPT)provide a prominent solution for computation-intensive applications to enhance computation capability and achieve sustainable energy supply.A wireless-powered mobile edge computing(WPMEC)system consisting of a hybrid access point(HAP)combined with MEC servers and many users is considered in this paper.In particular,a novel multiuser cooperation scheme based on orthogonal frequency division multiple access(OFDMA)is provided to improve the computation performance,where users can split the computation tasks into various parts for local computing,offloading to corresponding helper,and HAP for remote execution respectively with the aid of helper.Specifically,we aim at maximizing the weighted sum computation rate(WSCR)by optimizing time assignment,computation-task allocation,and transmission power at the same time while keeping energy neutrality in mind.We transform the original non-convex optimization problem to a convex optimization problem and then obtain a semi-closed form expression of the optimal solution by considering the convex optimization techniques.Simulation results demonstrate that the proposed multi-user cooperationassisted WPMEC scheme greatly improves the WSCR of all users than the existing schemes.In addition,OFDMA protocol increases the fairness and decreases delay among the users when compared to TDMA protocol. 展开更多
关键词 mobile edge computing(MEC) wireless power transfer(WPT) user cooperation OFDMA convex optimization
下载PDF
Scavenging Microwave Wireless Power:A Unified Model,Rectenna Design Automation,and Cutting-Edge Techniques
5
作者 Si-Ping Gao Jun-Hui Ou +1 位作者 Xiuyin Zhang Yongxin Guo 《Engineering》 SCIE EI CAS CSCD 2023年第11期32-48,共17页
While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas... While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas,few studies focus on the fundamental modeling and related design automation of receiver systems.This article reviews the development of MWPT and MWEH receivers,with a focus on rectenna design automation.A novel rectifier model capable of accurately modeling the rectification process under both high and low input power is presented.The model reveals the theoretical boundary of radio frequency-to-direct current(dc)power conversion efficiency and,most importantly,enables an automated system design.The automated rectenna design flow is sequential,with the minimal engagement of iterative optimization.It covers the design automation of every module(i.e.,rectifiers,matching circuits,antennae,and dc–dc converters).Scaling-up of the technique to large rectenna arrays is also possible,where the challenges in array partitioning and power combining are briefly discussed.In addition,several cutting-edge rectenna techniques for MWPT and MWEH are reviewed,including the dynamic range extension technique,the harmonics-based retro-directive technique,and the simultaneous wireless information and power transfer technique,which can be good complements to the presented automated design methodology. 展开更多
关键词 Microwave wireless power transfer Microwave wireless energy harvesting Unified Rectifier model Automated rectenna design Emerging rectenna techniques
下载PDF
Coupler Loss Analysis of Magnetically Coupled Resonant Wireless Power Transfer System
6
作者 Da Li XuSheng Wu +2 位作者 Wei Gao Di Luo Jianxin Gao 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第1期63-72,共10页
The demand for electric vehicles has increased over the past few years.Wireless power transfer for electric vehicles provides more flexibility than traditional plug-in charging technology.Charging couplers are critica... The demand for electric vehicles has increased over the past few years.Wireless power transfer for electric vehicles provides more flexibility than traditional plug-in charging technology.Charging couplers are critical components in wireless power transfer systems.The thermal effect produced by the magnetic coupler in work will cause the temperature of the device to rise rapidly,affecting the work efficiency,transfer power,operation reliability,and service life.This paper modeled and analyzed each component's temperature distribution characteristics and thermal behavior.Firstly,the magnetic coupler's mutual inductance and magnetic circuit model are established,and the thermal model of the magnetic coupler analyzes the heat generation process.The thermal models of the coupler under three different magnetic core distributions are established,and the temperature rise of each component is obtained.The temperature rise of different parts of the coupler is verified by the temperature rise test structure of the experiment. 展开更多
关键词 Wireless power transfer Magnetic coupler Thermal circuit model Temperature distribution
下载PDF
UAV Autonomous Navigation for Wireless Powered Data Collection with Onboard Deep Q-Network
7
作者 LI Yuting DING Yi +3 位作者 GAO Jiangchuan LIU Yusha HU Jie YANG Kun 《ZTE Communications》 2023年第2期80-87,共8页
In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly ... In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly optimize the UAV’s flight trajectory and the sensor selection and operation modes to maximize the average data traffic of all sensors within a wireless sensor network(WSN)during finite UAV’s flight time,while ensuring the energy required for each sensor by wireless power transfer(WPT).We consider a practical scenario,where the UAV has no prior knowledge of sensor locations.The UAV performs autonomous navigation based on the status information obtained within the coverage area,which is modeled as a Markov decision process(MDP).The deep Q-network(DQN)is employed to execute the navigation based on the UAV position,the battery level state,channel conditions and current data traffic of sensors within the UAV’s coverage area.Our simulation results demonstrate that the DQN algorithm significantly improves the network performance in terms of the average data traffic and trajectory design. 展开更多
关键词 unmanned aerial vehicle wireless power transfer deep Q-network autonomous navigation
下载PDF
大传输距离下电动汽车无线充电系统优化
8
作者 李延杰 李峰 +3 位作者 周思齐 马晓磊 冯建勇 霍栩 《北京工业大学学报》 CAS CSCD 北大核心 2024年第4期405-416,共12页
针对无线充电系统原边线圈嵌入路面结构后耦合线圈之间的距离增大、耦合程度减弱的问题,对线圈结构进行优化,以实现大传输距离下无线电能的传输。通过电磁有限元仿真对线圈的内径、外径和匝数进行优化,提出以耦合系数为优化目标的线圈... 针对无线充电系统原边线圈嵌入路面结构后耦合线圈之间的距离增大、耦合程度减弱的问题,对线圈结构进行优化,以实现大传输距离下无线电能的传输。通过电磁有限元仿真对线圈的内径、外径和匝数进行优化,提出以耦合系数为优化目标的线圈结构参数优化流程,同时,在Simulink中搭建无线充电系统的电路仿真平台,对采用优化后线圈结构的无线充电系统性能进行测试。结果表明:随着线圈内径增大,耦合系数先增大,达到峰值后迅速减小;随着线圈外径增大,耦合系数逐渐增大;在不同外径下,线圈的最优匝数均为9匝;3个参数中,增大外径是提高线圈耦合程度最有效的方式;最终优化后线圈的参数为外径480 mm、内径210 mm、匝数9匝,可以实现300 mm距离的电能传输,系统输出功率保持在2.96~3.70 kW,传输效率达到86.54%,横向容许偏移距离可达60 mm。 展开更多
关键词 无线充电系统 电动汽车 无线电能传输(wireless power transfer WPT) 耦合线圈 大传输距离 磁耦合谐振
下载PDF
Intelligent Reflecting Surface Assisted Transmission Optimization Strategies in Wireless Networks
9
作者 He Xinxin Qi Xuan +2 位作者 Meng Wei Liu Wei Yin Changchuan 《China Communications》 SCIE CSCD 2024年第4期120-135,共16页
Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although... Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although the intelligent reflecting surface(IRS)can be adopted to create effective virtual links to address the mmWave blockage problem,the conventional solutions only adopt IRS in the downlink from the Base Station(BS)to the users to enhance the received signal strength.In practice,the reflection of IRS is also applicable to the uplink to improve the spectral efficiency.It is a challenging to jointly optimize IRS beamforming and system resource allocation for wireless energy acquisition and information transmission.In this paper,we first design a Low-Energy Adaptive Clustering Hierarchy(LEACH)clustering protocol for clustering and data collection.Then,the problem of maximizing the minimum system spectral efficiency is constructed by jointly optimizing the transmit power of sensor devices,the uplink and downlink transmission times,the active beamforming at the BS,and the IRS dynamic beamforming.To solve this non-convex optimization problem,we propose an alternating optimization(AO)-based joint solution algorithm.Simulation results show that the use of IRS dynamic beamforming can significantly improve the spectral efficiency of the system,and ensure the reliability of equipment communication and the sustainability of energy supply under NLOS link. 展开更多
关键词 intelligent reflecting surface(IRS) joint optimization millimeter wave wireless information transmission(WIT) wireless power transfer(WPT)
下载PDF
Designing an Effective Method for Automatic Electric Vehicle Charging Stations in a Static Environment
10
作者 Md. Robiul Islam Maisha Islam +2 位作者 Tania Sarkar Hanif Mia Md. Asadullah 《Journal of Power and Energy Engineering》 2024年第1期15-28,共14页
This article outlines an Effective Method for Automatic Electric Vehicle Charging Stations in a Static Environment. It consists of investigated wireless transformer structures with various ferrite forms. WPT technolog... This article outlines an Effective Method for Automatic Electric Vehicle Charging Stations in a Static Environment. It consists of investigated wireless transformer structures with various ferrite forms. WPT technology has rapidly advanced in the last few years. At kilowatt power levels, the transmission distance grows from a few millimeters to several hundred millimeters with a grid to load efficiency greater than 90%. The improvements have made the WPT more appealing for electric vehicle (EV) charging applications in both static and dynamic charging scenarios. Static and dynamic WEVCS, two of the main applications, are described, and current developments with features from research facilities, academic institutions, and businesses are noted. Additionally, forthcoming concepts based WEVCS are analyzed and examined, including “dynamic” wireless charging systems (WCS). A dynamic wireless power transfer (DWPT) system, which can supply electricity to moving EVs, is one of the feasible alternatives. The moving secondary coil is part of the dynamic WPT system, which also comprises of many fixed groundside (primary) coils. An equivalent circuit between the stationary system and the dynamic WPT system that results from the stationary system is demonstrated by theoretical investigations. The dynamic WPT system’s solenoid coils outperform circular coils in terms of flux distribution and misalignment. The WPT-related EV wireless charging technologies were examined in this study. WPT can assist EVs in overcoming their restrictions on cost, range, and charging time. 展开更多
关键词 Dynamic Wireless power Transfer (DWPT) Wireless Charging System (WCS) Electric Vehicle (EV) Dynamic Performance
下载PDF
RIS-Aided Constant-Envelope Beamforming for Multiuser Wireless Power Transfer:A Max-Min Approach 被引量:3
11
作者 Huiyuan Yang Chang Cai +1 位作者 Xiaojun Yuan Yingchang Liang 《China Communications》 SCIE CSCD 2021年第3期80-90,共11页
As a revolutionary hardware technology that can reconfigure the propagation environment,reconfigurable intelligent surfaces(RISs)have been regarded as a promising solution to enhance wireless networks.In this paper,we... As a revolutionary hardware technology that can reconfigure the propagation environment,reconfigurable intelligent surfaces(RISs)have been regarded as a promising solution to enhance wireless networks.In this paper,we consider a multiuser multiple-input single-output(MISO)wireless power transfer(WPT)system,which is assisted by several RISs.In order to improve energy efficiency and reduce hardware cost,we consider that the energy transmitter(ET)in the WPT system is equipped with a constant-envelope analog beamformer,instead of a digital beamformer.Focusing on user fairness,we study a minimum received power maximization problem by jointly optimizing the ET beamforming and the RIS phase shifts,subject to the constant-envelope constraints.We iteratively solve this non-convex maxmin problem by leveraging both the successive convex approximation(SCA)method and the alternating direction method of multipliers(ADMM)algorithm.Numerical results demonstrate the effectiveness of the proposed algorithm and show attractive performance gain brought by RISs. 展开更多
关键词 reconfigurable intelligent surface wireless power transfer max-min fairness constantenvelope beamforming
下载PDF
Analysis and Design of Four-Plate Capacitive Wireless Power Transfer System for Undersea Applications 被引量:11
12
作者 Lei Yang Yuanqi Zhang +5 位作者 Xiaojie Li Jiale Jian Zhe Wang Jingjing Huang Li Ma Xiangqian Tong 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第3期202-211,共10页
This paper presents a four-plate undersea capacitive wireless power transfer(CPT)system for underwater applications such as autonomous underwater vehicles(AUVs).Generally,a CPT system transfers the power based on elec... This paper presents a four-plate undersea capacitive wireless power transfer(CPT)system for underwater applications such as autonomous underwater vehicles(AUVs).Generally,a CPT system transfers the power based on electric fields.The complex resonant compensation networks are used to make the CPT system work in the resonant condition.The resonant voltage is always very high.It will be a big challenge to the human safety.In this paper,a virtual electrons periodic reciprocating flow theory is proposed for the CPT system.In one switching cycle,the electrons firstly flow in the forward direction through the forward path and then flow in the inverse direction through the inverse path.The CPT system has been deeply studied with the vacuum dielectric or the air dielectric.However,for the CPT system,there are few papers to show the underwater application.In this paper,an undersea four-plate CPT system is designed and studied in the underwater condition.The two coupling capacitors and other elements of the CPT system could build a closed-loop path.A small value inductor is adapted as a resonant compensation network for the four-plate CPT system.The DC voltage is inverted to the AC voltage in the primary side with the single-phase full-bridge inverter.The resonant voltage is rectified to the DC voltage in the secondary side with the single-phase full-bridge diode rectifier.A 100 W power level CPT system is constructed to verify the theory analysis and the calculation.The theory analysis is verified by the simulated and experimental results.The stable output voltage and load power are achieved in this paper. 展开更多
关键词 Wireless power transfer system capacitive underwater applications autonomous underwater vehicles(AUVs)
下载PDF
Wireless communication and wireless power transfer system for implantable medical device 被引量:3
13
作者 Zhang Zhang Chao Chen +3 位作者 Tairan Fei Hao Xiao Guangjun Xie Xin Cheng 《Journal of Semiconductors》 EI CAS CSCD 2020年第10期56-62,共7页
Traditional magnetically coupled resonant wireless power transfer technology uses fixed distances between coils for research,to prevent fluctuations in the receiving voltage,and lead to reduce transmission efficiency.... Traditional magnetically coupled resonant wireless power transfer technology uses fixed distances between coils for research,to prevent fluctuations in the receiving voltage,and lead to reduce transmission efficiency.This paper proposes a closed-loop control wireless communication wireless power transfer system with a wearable four-coil structure to stabilize the receiving voltage fluctuation caused by changes in the displacement between the coils.Test results show that the system can provide stable receiving voltage,no matter how the distance between the transmitting coil and the receiving coil is changed.When the transmission distance is 20 mm,the power transfer efficiency of the system can reach 18.5%under the open-loop state,and the stimulus parameters such as the stimulation period and pulse width can be adjusted in real time through the personal computer terminal. 展开更多
关键词 implantable medical equipment four-coil insertion resonance structure wireless communication wireless power transfer
下载PDF
Efficient and stable wireless power transfer based on the non-Hermitian physics 被引量:3
14
作者 曾超 郭志伟 +8 位作者 祝可嘉 范才富 李果 江俊 李云辉 江海涛 羊亚平 孙勇 陈鸿 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期37-44,共8页
As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer(WPT)in the near field has been extensively developed in recent years,and promot... As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer(WPT)in the near field has been extensively developed in recent years,and promoted a variety of practical applications,such as mobile phones,medical implant devices and electric vehicles.However,the physical mechanism behind some key limitations of the resonance WPT,such as frequency splitting and size-dependent efficiency,is not very clear under the widely used circuit model.Here,we review the recently developed efficient and stable resonance WPT based on non-Hermitian physics,which starts from a completely different avenue(utilizing loss and gain)to introduce novel functionalities to the resonance WPT.From the perspective of non-Hermitian photonics,the coherent and incoherent effects compete and coexist in the WPT system,and the weak stable of energy transfer mainly comes from the broken phase associated with the phase transition of parity-time symmetry.Based on this basic physical framework,some optimization schemes are proposed,including using nonlinear effect,using bound states in the continuum,or resorting to the system with high-order parity-time symmetry.Moreover,the combination of non-Hermitian physics and topological photonics in multi-coil system also provides a versatile platform for long-range robust WPT with topological protection.Therefore,the non-Hermitian physics can not only exactly predict the main results of current WPT systems,but also provide new ways to solve the difficulties of previous designs. 展开更多
关键词 wireless power transfer non-Hermitian physics topological edge states
下载PDF
Online Computation Offloading and Trajectory Scheduling for UAV-Enabled Wireless Powered Mobile Edge Computing 被引量:2
15
作者 Han Hu Xiang Zhou +1 位作者 Qun Wang Rose Qingyang Hu 《China Communications》 SCIE CSCD 2022年第4期257-273,共17页
The unmanned aerial vehicle(UAV)-enabled mobile edge computing(MEC) architecture is expected to be a powerful technique to facilitate 5 G and beyond ubiquitous wireless connectivity and diverse vertical applications a... The unmanned aerial vehicle(UAV)-enabled mobile edge computing(MEC) architecture is expected to be a powerful technique to facilitate 5 G and beyond ubiquitous wireless connectivity and diverse vertical applications and services, anytime and anywhere. Wireless power transfer(WPT) is another promising technology to prolong the operation time of low-power wireless devices in the era of Internet of Things(IoT). However, the integration of WPT and UAV-enabled MEC systems is far from being well studied, especially in dynamic environments. In order to tackle this issue, this paper aims to investigate the stochastic computation offloading and trajectory scheduling for the UAV-enabled wireless powered MEC system. A UAV offers both RF wireless power transmission and computation services for IoT devices. Considering the stochastic task arrivals and random channel conditions, a long-term average energyefficiency(EE) minimization problem is formulated.Due to non-convexity and the time domain coupling of the variables in the formulated problem, a lowcomplexity online computation offloading and trajectory scheduling algorithm(OCOTSA) is proposed by exploiting Lyapunov optimization. Simulation results verify that there exists a balance between EE and the service delay, and demonstrate that the system EE performance obtained by the proposed scheme outperforms other benchmark schemes. 展开更多
关键词 energy efficiency mobile edge computing UAV-enabled wireless power transfer trajectorys cheduling
下载PDF
Power Splitting Based SWIPT in Network-Coded Two-Way Networks with Data Rate Fairness:An Information-Theoretic Perspective 被引量:2
16
作者 Ke Xiong Yu Zhang +1 位作者 Yueyun Chen Xiaofei Di 《China Communications》 SCIE CSCD 2016年第12期107-119,共13页
This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an S... This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an SWIPT-aware energy harvesting(EH) relay. We present a power splitting(PS)-based two-way relaying(PS-TWR) protocol by employing the PS receiver architecture. To explore the system sum rate limit with data rate fairness, an optimization problem under total power constraint is formulated. Then, some explicit solutions are derived for the problem. Numerical results show that due to the path loss effect on energy transfer, with the same total available power, PS-TWR losses some system performance compared with traditional non-EH two-way relaying, where at relatively low and relatively high signalto-noise ratio(SNR), the performance loss is relatively small. Another observation is that, in relatively high SNR regime, PS-TWR outperforms time switching-based two-way relaying(TS-TWR) while in relatively low SNR regime TS-TWR outperforms PS-TWR. It is also shown that with individual available power at the two sources, PS-TWR outperforms TS-TWR in both relatively low and high SNR regimes. 展开更多
关键词 two-way relay energy harvesting wireless power transfer data rate fairness network coding
下载PDF
Spectrum Efficiency Maximization for Cooperative Power Beacon-Enabled Wireless Powered Communication Networks 被引量:1
17
作者 Wenjun Xu Wei Chen +2 位作者 Yongjian Fan Zhi Zhang Xinxin Shi 《China Communications》 SCIE CSCD 2021年第12期230-251,共22页
We consider a spectrum efficiency(SE)maximization problem for cooperative power beacon-enabled wireless powered communication networks(CPB-WPCNs),where each transmitter harvests en-ergy from multi-antenna power beacon... We consider a spectrum efficiency(SE)maximization problem for cooperative power beacon-enabled wireless powered communication networks(CPB-WPCNs),where each transmitter harvests en-ergy from multi-antenna power beacons(PBs)and transmits data to the corresponding receiver.For data transmission,both orthogonal transmission,i.e.,the time splitting(TS)mode,and non-orthogonal trans-mission,i.e.,the interference channel(IC)mode,are considered.Aiming to improve the system SE,the energy beamformers of PBs,the transmit power,and the transmit time duration of transmitters are jointly optimized.For the TS mode,the original non-convex problem is transformed into a convex opti-mization problem by means of variable substitution and semidefinite relaxation(SDR).The rank-one na-ture of this SDR is proved,and then a Lagrange-dual based fast algorithm is proposed to obtain the opti-mal solution with much lower complexity.For the IC mode,to conquer the strong non-convexity of the problem,a branch-reduce-and-bound(BRB)mono-tonic optimization algorithm is designed as a bench-mark.Furthermore,a low-complexity distributed suc-cessive convex approximation(SCA)algorithm is pre-sented.Finally,simulation results validate the perfor-mance of the proposed algorithms,achieving optimal-ity within only 1%∼2%computation time compared to the CVX solver in the TS mode and achieving 98%of the optimal performance in the IC mode. 展开更多
关键词 spectrum efficiency power beacon WPCN time splitting interference channel wireless power transfer
下载PDF
Numerical Analysis of Magnetic-Shielding Effectiveness for Magnetic Resonant Wireless Power Transfer System 被引量:1
18
作者 卢伟国 李惠荣 +1 位作者 陈伟铭 刘黎辉 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期148-151,共4页
Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic pe... Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic performance in engineering. In this study, the shielding effectiveness of a two-coil MR-WPT system for different material shields is analyzed in theory using Moser's formula and Schelkunoff's formula. On this basis a candidate magnetic-shielding scheme with a double-layer structure is determined, which has better shielding effectiveness and coils coupling coefficient. Finally, some finite element simulation results validate the correctness of the theoretical analysis, and the shielding effectiveness with the double-layer shield in maximum is 30?dB larger than the one with the single-layer case. 展开更多
关键词 MR WPT Numerical Analysis of Magnetic-Shielding Effectiveness for Magnetic Resonant Wireless power Transfer System
下载PDF
Design of Wireless Power Transfer with High Efficiency for Biomedical Implants 被引量:1
19
作者 Qingya Li Zhiwei Zhang Jingna Mao 《Journal of Beijing Institute of Technology》 EI CAS 2022年第1期53-60,共8页
Wireless power transfer(WPT)technology is a popular choice for biomedical implant devices.The demands of higher efficiency and smaller implantation size are hard to compromise in previous studies.In the present work,a... Wireless power transfer(WPT)technology is a popular choice for biomedical implant devices.The demands of higher efficiency and smaller implantation size are hard to compromise in previous studies.In the present work,an implantable magnetic coupling resonant WPT system in-tegrated with a metasurface element working at 430 MHz is presented.Similar planar copper coil components for the transmitting and receiving structures are used to construct the primary system,and then the metasurface element is integrated to constitute the whole WPT system.The effects of the distances between the transmitting coil and skin surface,between the skin surface,and receiv-ing coil are discussed.The results show that the efficiency will be enhanced by 38-50 dB integrat-ing with the metasurface. 展开更多
关键词 wireless power transfer(WPT) MINIATURIZATION metasurface
下载PDF
Traction power substation balance and losses estimation in AC railways using a power transfer device through Monte Carlo analysis 被引量:1
20
作者 Vitor A.Morais Antonio P.Martins 《Railway Engineering Science》 2022年第1期71-95,共25页
The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the app... The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the application of a power transfer device installed in the neutral zone and exchanging active power between two sections. The main analyzed parameters are the active power balance in the two neighbor traction power substations and the system power losses. A simulation framework is presented to comprise the desired analysis and a universe of randomly distributed scenarios are tested to evaluate the effectiveness of the power transfer device system. The results show that the density of trains and the relative branch length of a traction power substation should be considered in the evaluation phase of the best place to install a power transfer device, towards the reduction of the operational power losses, while maintaining the two substations balanced in terms of active power. 展开更多
关键词 Electric traction systems Monte Carlo analysis power transfer device power quality Railway power systems Smart railways
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部