期刊文献+
共找到627篇文章
< 1 2 32 >
每页显示 20 50 100
A Review on Technologies for the Use of CO2 as a Working Fluid in Refrigeration and Power Cycles
1
作者 Orelien T. Boupda Hyacinthe D. Tessemo +3 位作者 Isidore B. Nkounda Fongang Francklin G. Nyami Frederic Lontsi Thomas Djiako 《Energy and Power Engineering》 2024年第6期217-256,共40页
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther... The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented. 展开更多
关键词 refrigeration cycle power cycle System Performance Transcritical CO2 cycles Working Fluid
下载PDF
Performance of Gas-Steam Combined Cycle Cogeneration Units Influenced by Heating Network Terminal Steam Parameters
2
作者 Guanglu Xie Zhimin Xue +5 位作者 Bo Xiong Yaowen Huang Chaoming Chen Qing Liao Cheng Yang Xiaoqian Ma 《Energy Engineering》 EI 2024年第6期1495-1519,共25页
The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p... The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak. 展开更多
关键词 Gas-steam combined cycle cogeneration of heating and power steam network inverse problem operating performance
下载PDF
Performance analysis of ammonia-water absorption/compression combined refrigeration cycle 被引量:1
3
作者 鲍帅阳 杜垲 +2 位作者 蔡星辰 牛晓峰 武云龙 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期60-67,共8页
In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis ... In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis and calculations on two combination ways by adding the compressor in the high-pressure area and in the low-pressure area are conducted respectively.The effects of several factors including the evaporation temperature Te heat-source temperature Th as well as the cooling water temperature Tw on the equivalent heat consumption in compression qCW heat consumption in absorption qG and the system coefficient of performance COP are analyzed under the two combination configurations.The results show that the effect of the equivalent heat consumption in compression on the COP is less than that of the heat consumption in absorption.Besides the compressor set in the high-pressure area uses more energy than that in the low-pressure area. Moreover the compressor in the low-pressure area is superior to that in the high-pressure area with respect to the COP. Under the given intermediate pressure there is an optimum heat-source temperature corresponding to the maximum COP of the AWA/CCR cycle. 展开更多
关键词 AMMONIA-WATER ABSORPTION compression refrigeration combined refrigeration cycle coefficient of performance COP
下载PDF
Model Selection of Gas Turbine for Large Scale Gas-Fired Combined Cycle Power Plant
4
作者 何语平 《Electricity》 2003年第4期36-39,共4页
This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, pr... This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, providing reference for the relevant sectors and enterprises in importing advanced gas turbines and technologies. 展开更多
关键词 natural gas combined cycle power plant unit model selection
下载PDF
Simulation and performance analysis of organic Rankine cycle combined heat and power system
5
作者 刘玉兰 曹政 +1 位作者 陈九法 熊健 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期489-495,共7页
To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state.... To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state. In the system,R245 fa was selected as the working fluid. A scroll expander was modeled with empirical isentropic expansion efficiency.Plate heat exchangers were selected as the evaporator and the condenser, and detailed heat transfer models were programmed for both one-phase and two-phase regions. Simulations were carried out at seven different heat source temperatures( 80,90, 100, 110, 120, 130, 140 ℃) in combination with eight different heat sink temperatures( 20, 25, 30, 35, 40, 45, 50,55 ℃). Results showthat in the ORC without an internal heat exchanger( IHE), the optimum cycle efficiencies are in the range of 7. 0% to 7. 3% when the temperature differences between the heat source and heat sink are in the range of 70 to90 ℃. Simulations on CHP reveal that domestic hot water can be produced when the heat sink inlet temperature is higher than40 ℃, and the corresponding exergy efficiency and overall thermal efficiency are 29% to 56% and 87% to 90% higher than those in the non-CHP ORC, respectively. It is found that the IHE has little effect on the improvement of work output and efficiencies for the CHP ORC. 展开更多
关键词 organic Rankine cycle combined heat and power cycle efficiency exergy efficiency thermal efficiency
下载PDF
Thermo-economic Investigation of an Enhanced Geothermal System Organic Rankine Cycle and Combined Heating and Power System
6
作者 WANG Lingbao BU Xianbiao LI Huashan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期1958-1966,共9页
As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon... As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon neutralization. The main challenge for EGSs is to reduce the investment cost. In the present study, thermo-economic investigations of EGS projects are conducted. The effects of geofluid mass flow rate, wellhead temperature and loss rate on the thermo-economic performance of the EGS organic Rankine cycle(ORC) are studied. A performance comparison between EGS-ORC and the EGS combined heating and power system(CHP) is presented. Considering the CO_(2)emission reduction benefits, the influence of carbon emission trading price on the levelized cost of energy(LCOE) is also presented. It is indicated that the geofluid mass flow rate is a critical parameter in dictating the success of a project. Under the assumed typical working conditions, the LCOE of EGS-ORC and EGS-CHP systems are 24.72 and 16.1 cents/k Wh, respectively. Compared with the EGS-ORC system, the LCOE of the EGS-CHP system is reduced by 35%. EGS-CHP systems have the potential to be economically viable in the future. With carbon emission trading prices of 12.76 USD/ton, the LCOE can be reduced by approximately 8.5%. 展开更多
关键词 enhanced geothermal system organic Rankine cycle combined heating and power system thermo-economic investigation carbon emission reduction
下载PDF
Prediction of Electrical Output Power of Combined Cycle Power Plant Using Regression ANN Model
7
作者 Elkhawad Ali Elfaki Ahmed Hassan Ahmed 《Journal of Power and Energy Engineering》 2018年第12期17-38,共22页
Recently, regression artificial neural networks are used to model various systems that have high dimensionality with nonlinear relations. The system under study must have enough dataset available to train the neural n... Recently, regression artificial neural networks are used to model various systems that have high dimensionality with nonlinear relations. The system under study must have enough dataset available to train the neural network. The aim of this work is to apply and experiment various options effects on feed-foreword artificial neural network (ANN) which used to obtain regression model that predicts electrical output power (EP) of combined cycle power plant based on 4 inputs. Dataset is obtained from an open online source. The work shows and explains the stochastic behavior of the regression neural, experiments the effect of number of neurons of the hidden layers. It shows also higher performance for larger training dataset size;at the other hand, it shows different effect of larger number of variables as input. In addition, two different training functions are applied and compared. Lastly, simple statistical study on the error between real values and estimated values using ANN is conducted, which shows the reliability of the model. This paper provides a quick reference to the effects of main parameters of regression neural networks. 展开更多
关键词 NEURAL NETWORKS Regression combined power cycle MATLAB NEURAL NETWORKS TOOLBOX
下载PDF
Application of Combined Cycle in Modernized Retrofit of Old Thermal Power Plants
8
作者 Jia Nansong Liu Dongyuan Longyuan Electric Power Group Corporation 《Electricity》 2000年第2期37-41,共5页
This article expounds the advantages and three schemes of applying combined cycle to the modernized retrofit of old thermal power plants. Through analyzing and comparing technical economics of these three schemes, it ... This article expounds the advantages and three schemes of applying combined cycle to the modernized retrofit of old thermal power plants. Through analyzing and comparing technical economics of these three schemes, it is concluded that to use feedwater heating and heat recovery steam generator (HRSG) is suitable for the units with unit capacity below 100 MW, while to use exhaust gas reburning is suitable for units with unit capacity of 125 MW, 200 MW and above. 展开更多
关键词 combined cycle RETROFIT of OLD thermal power PLANTS analysis of TECHNICAL ECONOMY
下载PDF
Monte Carlo Simulation of a Combined-Cycle Power Plant Considering Ambient Temperature Fluctuations
9
作者 Amir Hossein Jafari Yeganeh Ali Behbahaninia Parastoo Ghadamabadi 《Journal of Power and Energy Engineering》 2022年第5期116-131,共16页
A combined-cycle power plant (CCPP) is broadly utilized in many countries to cover energy demand due to its higher efficiency than other conventional power plants. The performance of a CCPP is highly sensitive to ambi... A combined-cycle power plant (CCPP) is broadly utilized in many countries to cover energy demand due to its higher efficiency than other conventional power plants. The performance of a CCPP is highly sensitive to ambient air temperature (AAT) and the generated power varies widely during the year with temperature fluctuations. To have an accurate estimation of power generation, it is necessary to develop a model to predict the average monthly power of a CCPP considering ambient temperature changes. In the present work, the Monte Carlo (MC) method was used to obtain the average generated power of a CCPP. The case study was a combined-cycle power plant in Tehran, Iran. The region’s existing meteorological data shows significant fluctuations in the annual ambient temperature, which severely impact the performance of the mentioned plant, causing a stochastic behavior of the output power. To cope with this stochastic nature, the probability distribution of monthly outdoor temperature for 2020 was determined using the maximum likelihood estimation (MLE) method to specify the range of feasible inputs. Furthermore, the plant was accurately simulated in THERMOFLEX to capture the generated power at different temperatures. The MC method was used to couple the ambient temperature fluctuations to the output power of the plant, modeled by THERMOFLEX. Finally, the mean value of net power for each month and the average output power of the system were obtained. The results indicated that each unit of the system generates 436.3 MW in full load operation. The average deviation of the modeling results from the actual data provided by the power plant was an estimated 3.02%. Thus, it can be concluded that this method helps achieve an estimation of the monthly and annual power of a combined-cycle power plant, which are effective indexes in the economic analysis of the system. 展开更多
关键词 combined-cycle power Plant Monte Carlo Method Ambient Air Temper-ature Maximum Likelihood Estimation Stochastic Behavior
下载PDF
Thermodynamic analysis and combined cycle research on recoverable pressure energy in natural gas pipeline 被引量:2
10
作者 郑斌 刘俊德 《Journal of Beijing Institute of Technology》 EI CAS 2011年第1期65-70,共6页
Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produc... Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produced from capturing the pressure energy has been calculated. Based on the comprehensive thermodynamic analysis, two systems have been proposed to capture pressure energy of natural gas to generate electricity. In this study, the expression of exergy is given which can be used in evaluating purposes. A problem with this multidisciplinary study is the complicated boundary condition. In conclusion, a technical prospect on recoverable natural gas pressure energy has been presented based on total energy system theory. 展开更多
关键词 natural gas pressure energy thermodynamic analysis exergy analysis power genera-tion combined cycle total energy system
下载PDF
Improved Design of a 25 MW Gas Turbine Plant Using Combined Cycle Application 被引量:1
11
作者 Barinaadaa Thaddeus Lebele-Alawa Anthony Kpegele Le-ol 《Journal of Power and Energy Engineering》 2015年第8期1-14,共14页
This paper presents the improved design of a 25 MW gas turbine power plant at Omoku in the Niger Delta area of Nigeria, using combined cycle application. It entails retrofitting a steam bottoming plant to the existing... This paper presents the improved design of a 25 MW gas turbine power plant at Omoku in the Niger Delta area of Nigeria, using combined cycle application. It entails retrofitting a steam bottoming plant to the existing 25 MW gas turbine plant by incorporating a heat recovery steam generator. The focus is to improve performance as well as reduction in total emission to the environment. Direct data collection was performed from the HMI monitoring screen, log books and manufacturer’s manual. Employing the application of MATLAB, the thermodynamics equations were modeled and appropriate parameters of the various components of the steam turbine power plant were determined. The results show that the combined cycle system had a total power output of 37.9 MW, made up of 25.0 MW from the gas turbine power plant and 12.9 MW (an increase of about 51%) from the steam turbine plant, having an HRSG, condenser and feed pump capacities of 42.46 MW, 29.61 MW and 1.76 MW respectively. The condenser cooling water parameters include a mass flow of 1180.42 kg/s, inlet and outlet temperatures of 29.8°C and 35.8°C respectively. The cycle efficiency of the dry mode gas turbine was 26.6% whereas, after modification, the combined cycle power plant overall efficiency is 48.8% (about 84% increases). Hence, SIEMENS steam turbine product of MODEL: SST-150 was recommended as the steam bottoming plant. Also the work reveals that a heat flow of about 42.46 MW which was otherwise being wasted in the exhaust gas of the 25 MW gas turbine power plant could be converted to 12.9 MW of electric power, thus reducing the total emission to the environment. 展开更多
关键词 Gas TURBINE Steam TURBINE HRSG combined cycle power OUTPUT Overall Efficiency CONDENSER COOLING Water
下载PDF
Assessment of Site Parameters and Heat Recovery Characteristics on Combined Cycle Performance in an Equatorial Environment 被引量:1
12
作者 Sidum Adumene Samson Nitonye 《World Journal of Engineering and Technology》 2016年第2期313-324,共12页
This paper investigates the effects of site based parameters such as ambient temperature, humidity, altitude and heat transfer characteristic of a dual pressure heat recovery system on the performance of the combined ... This paper investigates the effects of site based parameters such as ambient temperature, humidity, altitude and heat transfer characteristic of a dual pressure heat recovery system on the performance of the combined cycle power plant within an equatorial environment. The bulk heat utilization and configuration of a dual pressure heat recovery system are investigated. It is observed that the heat system configuration play a vital role in optimizing the combined cycle overall performance, which has proportionality relationship with the operating ambient temperature and relative humidity of the gas turbine. The investigation is carried out within the ambient temperature range of 24℃ to 35℃, relative humidity of 60% to 80%, and a high level steam pressure of 60 bar to 110 bar. The results show that at 24℃ ambient temperature, the heat recovery system has the highest duty of 239.4 MW, the optimum combined cycle power output of 205.52 MW, and overall efficiency of 47.46%. It further indicates that as the ambient temperature increases at an average exhaust gas temperature of 530℃ and mass flow of 470 kg/s, the combined cycle power output and efficiency decrease by 15.5% and 13.7% respectively under the various considerations. This results from a drop in the air and exhaust mass flow as the values of the site parameters increase. The overall results indicate that decreasing the ambient temperature at optimum exhaust gas flow and temperature increases the heat recovery system heat duty performance, the steam generation, overall combined cycle power output and efficiency, which satisfies the research objective. 展开更多
关键词 Gas-Turbine Ambient Temperature Humidity combined cycle EFFICIENCY power Output HRSG
下载PDF
DESIGN OF COMBINED CYCLE GENERATION SYSTEM WITH HIGH TEMPERATURE FUEL CELL AND STEAM TURBINE
13
作者 YuLijun YuanJunqi CaoGuangyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期289-291,共3页
For environment protection and high efficiency, development of new conceptpower plant has been required in China. The fuel cell is expected to be used in a power plant as acentralized power Station or distributed powe... For environment protection and high efficiency, development of new conceptpower plant has been required in China. The fuel cell is expected to be used in a power plant as acentralized power Station or distributed power plant. It is a chemical power generation device thatconverts the energy of a chemical reaction directly into electrical energy and not limited by Carnotcycle efficiency. The molten carbonate fuel cell (MCFC) power plant has several attractive featuresi.e. high efficiency and lower emission of NO_x and SO_x A combined cycle generation system withMCFC and steam turbine is designed. Its net electrical efficiency LHV is about 55 percent. 展开更多
关键词 combined cycle IG-MCFC power plant Coal gasification
下载PDF
Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling,Heating and Power System
14
作者 LIU Jiejie LI Yao +1 位作者 MENG Xianyang WU Jiangtao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期931-950,共20页
The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a mult... The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a multi-objective optimization model based on the life cycle assessment(LCA)method for the optimal design of hybrid solar and biomass system.The life-cycle process of the poly-generation system is divided into six phases to analyze energy consumption and greenhouse gas emissions.The comprehensive performances of the hybrid system are optimized by incorporating the evaluation criteria,including environmental impact in the whole life cycle,renewable energy contribution and economic benefit.The non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)with the technique for order preference by similarity to ideal solution(TOPSIS)method is employed to search the Pareto frontier result and thereby achieve optimal performance.The developed optimization methodology is used for a case study in an industrial park.The results indicate that the best performance from the optimized hybrid system is reached with the environmental impact load reduction rate(EILRR)of 46.03%,renewable energy contribution proportion(RECP)of 92.73%and annual total cost saving rate(ATCSR)of35.75%,respectively.By comparing pollutant-eq emissions of different stages,the operation phase emits the largest pollutant followed by the phase of raw material acquisition.Overall,this study reveals that the proposed multi-objective optimization model integrated with LCA method delivers an alternative path for the design and optimization of more sustainable CCHP system. 展开更多
关键词 combined cooling heating and power system solar-biomass multi-objective optimization life cycle assessment optimal design
原文传递
Parametric Energy and Economic Analysis ofModified Combined Cycle Power Plant with Vapor Absorption and Organic Rankine Cycle
15
作者 Abdul Moiz Malik Shahzaib +2 位作者 Abdul Ghafoor Memon Laveet Kumar Mamdouh El Haj Assad 《Energy Engineering》 EI 2024年第11期3095-3120,共26页
To meet the escalating electricity demand and rising fuel costs,along with notable losses in power transmission,exploring alternative solutions is imperative.Gas turbines demonstrate high efficiency under ideal Intern... To meet the escalating electricity demand and rising fuel costs,along with notable losses in power transmission,exploring alternative solutions is imperative.Gas turbines demonstrate high efficiency under ideal International Organization for Standardization(ISO)conditions but face challenges during summer when ambient temperatures reach 40℃.To enhance performance,the proposal suggests cooling inlet air by 15℃using a vapor absorption chiller(VAC),utilizing residual exhaust gases from a combined cycle power plant(CCPP)to maximize power output.Additionally,diverting a portion of exhaust gases to drive an organic Rankine cycle(ORC)for supplementary power generation offers added efficiency.This integrated approach not only boosts power output but alsominimizes environmental impact by repurposing exhaust gases for additional operations.This study presents a detailed energy and economic analysis of a modified combine cycle power plant,in Kotri,Pakistan.R600A is used as organic fuel for the ORC while LiBr-H2O solution is used for the VAC.Two performance parameters,efficiency and energy utilization factor,Four energetic parameters,Work output of ORC,modified CCPP,original CCPP and cooling rate,and one economics parameter,payback period were examined under varying ambient conditions and mass fraction of exhaust gases from outlet of a gas turbine(ψ).A parametric investigation was conducted within the temperature range of 18℃to 50℃,relative humidity between 70%and 90%,and theψranging from 0 to 0.3.The findings reveal that under elevated ambient conditions(40℃,90%humidity)withψat 0,the Energy Utilization Factor(EUF)exceeds 60%.However,the ORC exhibits a low work output of 100KWalongside a high cooling load of 29,000 kW.Conversely,the modified system demonstrates an augmented work output of approximately 81,850 KWcompared to the original system’s 78,500KW.Furthermore,the integration of this systemproves advantageous across all metrics.Additionally,the payback period of the system is contingent on ambient conditions,with lower conditions correlating to shorter payback periods and vice versa. 展开更多
关键词 combined cycle power plant vapor absorption chiller organic Rankine cycle
下载PDF
An Improved Combined Power System Utilizing Cold Energy of LNG
16
作者 Ping Wang Jiaxing Li Shengqiang Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第1期43-50,共8页
In order to improve efficiency of a combined power system in which waste heat from exhaust gas could be efficiently recovered and cold energ^^ of liquefied natural gas (LNG) could be fully utilized as well. A system... In order to improve efficiency of a combined power system in which waste heat from exhaust gas could be efficiently recovered and cold energ^^ of liquefied natural gas (LNG) could be fully utilized as well. A system simulation and ther^nodynamic analysis were carried out, the Kalina cycle was reorganized by changing the concentration of “basic composition”, so that a better thermal matching in the heat exchanger could be obtained and the irreversibility of the system was decreased. It was found that the Kalina cycle generally used in the bottom of combined power cycle could also be used to recover the cold energy of LNG. The results show that the exergy efficiency of 42.97% is obtained. Compared with the previous system attained the exergy efficiency of 39.76%, the improved system has a better performance. 展开更多
关键词 combined power system LNG (liquefied mtm'al gas) cold energy Kalina cycle themiodynaiiiic analysis
下载PDF
Numerical Calculation of a 3000MWt MHD-steam Combined Cycel System with Tail Gasification 被引量:1
17
作者 卢艳霞 《High Technology Letters》 EI CAS 2000年第3期86-90,共5页
A numerical calculation of a 3000MWt MHD steam combined cycle system with tail gasification is described . The research scheme has been set up and the parameters of this system have been designed. Then the efficiency ... A numerical calculation of a 3000MWt MHD steam combined cycle system with tail gasification is described . The research scheme has been set up and the parameters of this system have been designed. Then the efficiency of the combined cycle system has been calculated which is up to 53.9%. 展开更多
关键词 MHD power generation GASIFICATION with TAIL gas combined cycle SYSTEM
下载PDF
计及氢能高效利用和热电灵活输出的综合能源系统源荷灵活运行策略 被引量:1
18
作者 李亚莎 张永蘅 +3 位作者 陈俊璋 晏欣悦 郭玉杰 王佳敏 《广东电力》 北大核心 2024年第4期49-61,共13页
为进一步发挥氢能高效利用优势,构建绿色低碳能源系统,提出一种计及氢能高效利用和热电联产灵活输出的综合能源系统源荷灵活运行策略。首先,对源侧供能模型进行两方面改进:一是引入含风电制氢、燃气混氢、多能用氢和储氢的氢能利用模型... 为进一步发挥氢能高效利用优势,构建绿色低碳能源系统,提出一种计及氢能高效利用和热电联产灵活输出的综合能源系统源荷灵活运行策略。首先,对源侧供能模型进行两方面改进:一是引入含风电制氢、燃气混氢、多能用氢和储氢的氢能利用模型,并考虑到电解水和甲烷化反应过程中的热量散失情况,引入热量回收装置,构建计及热量回收的氢能高效利用模型;二是针对常规热电联产灵活性不足的问题,构建含电锅炉和有机朗肯循环的热电灵活输出模型,以解耦常规热电联产“以热定电”和“以电定热”限制。其次,在荷侧引入含可转移、可削减和可平移的电、热柔性负荷,以缓解电、热负荷峰谷差,并与源侧相结合,形成源荷灵活运行模型。最后,综合考虑阶梯型碳交易成本、设备运行维护成本、弃风成本以及购能成本,建立综合能源系统源荷灵活优化运行模型。采用CPLEX求解器对所提综合能源系统源荷灵活运行模型进行求解,并设置不同场景进行对比。结果表明,相比常规氢能利用模型,考虑所提计及热量回收的氢能高效利用模型时,系统的总成本、碳排放量分别降低了1.92%、4.22%,并且引入热电联产改进模型后,其总成本、碳排放量可进一步降低4.08%、7.32%,实现系统低碳、经济和灵活运行。 展开更多
关键词 氢能高效利用 热电联产 灵活输出 电、热柔性负荷 有机朗肯循环 综合能源系统
下载PDF
基于全生命周期评价的冷热电联供系统优化研究
19
作者 许小刚 嵇晓鹏 王惠杰 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期360-368,共9页
天然气与太阳能互补是提高能源利用率和实现节能减排的有效方法,该文构建一种光-气-储互补的冷热电联供(CCHP)系统。基于全生命周期理论,以一次能源节约率、总污染物减排率为目标函数,建立冷热电联供系统优化模型,应用遗传算法对系统变... 天然气与太阳能互补是提高能源利用率和实现节能减排的有效方法,该文构建一种光-气-储互补的冷热电联供(CCHP)系统。基于全生命周期理论,以一次能源节约率、总污染物减排率为目标函数,建立冷热电联供系统优化模型,应用遗传算法对系统变工况运行下的容量配置进行优化;将物质回收阶段纳入全生命周期评价,并在运输阶段考虑燃料运输。结果表明:经优化后,CCHP系统电跟随(FEL)策略可实现较好的节能减排效益。分供(SP)系统在物质回收阶段对环境的影响微乎其微,CCHP系统燃料运输能耗量远低于SP系统。 展开更多
关键词 冷热电联供系统 生命周期评估 能源消耗 污染物排放
下载PDF
Optimization Potentials for the Waste Heat Recovery of a Gas-Steam Combined Cycle Power Plant Based on Absorption Heat Pump 被引量:6
20
作者 ZHANG Hongsheng ZHAO Hongbin +1 位作者 LI Zhenlin HU Eric 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第2期283-293,共11页
A new waste heat recovery system is presented to recover exhausted steam waste heat from the steam turbine by absorption heat pump(AHP) in a gas-steam combined cycle(GSCC) power plant. The system can decrease energy c... A new waste heat recovery system is presented to recover exhausted steam waste heat from the steam turbine by absorption heat pump(AHP) in a gas-steam combined cycle(GSCC) power plant. The system can decrease energy consumption and further improve the energy utilization. The performance evaluation criteria are calculated, and exergy analysis for key components are implemented in terms of the energy and exergy analysis theory. Besides, the change of these criteria is also revealed before and after modification. The net power output approximately increases by 21738 kW, and equivalent coal consumption decreases by 5.58 g/kWh. A 1.81% and 1.92% increase in the thermal and exergy efficiency is respectively obtained in the new integrated system as the heating load is 401095 kJ at 100% condition. Meanwhile, the appropriate extraction parameters for heating have been also analyzed in the two systems. The proposed scheme can not only save energy consumption but also reduce emission and gain great economic benefit, which is proven to be a huge potential for practical application. 展开更多
关键词 combined cycle power plant absorption HEAT PUMP waste HEAT recovery evaluation CRITERIA EXERGY analysis
原文传递
上一页 1 2 32 下一页 到第
使用帮助 返回顶部