The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between th...Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output.展开更多
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi...Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.展开更多
With COP and dynamic characteristics in refrigeration cycle as criteria,a new metal hydride couple——LaNi 4.61 Mn 0.26 Al 0.13 /La 0.6 Y 0.4 Ni 4.8 Mn 0.2 was selected by establishing calculation procedure and metal ...With COP and dynamic characteristics in refrigeration cycle as criteria,a new metal hydride couple——LaNi 4.61 Mn 0.26 Al 0.13 /La 0.6 Y 0.4 Ni 4.8 Mn 0.2 was selected by establishing calculation procedure and metal hydride selection model.The experimental results show that the refigeration cycle of the selected couple is good in the performance.The recovered waste heat and refrigeration power from exhaust gas of several kinds of automobile are calculated by waste-heat formula,coefficient R Q and COP.Refrigeration cycle of the new couple can satisfy the air-conditioning requirement of truck and car and is not enough in passenger car,according to the respective cooling load.展开更多
In this study,a parametric analysis was performed of a supercritical organic Rankine cycle driven by solar parabolic trough collectors(PTCs)coupled with a vapour-compression refrigeration cycle simultaneously for cool...In this study,a parametric analysis was performed of a supercritical organic Rankine cycle driven by solar parabolic trough collectors(PTCs)coupled with a vapour-compression refrigeration cycle simultaneously for cooling and power production.Thermal efficiency,exergy efficiency,exergy destruction and the coefficient of performance of the cogeneration system were considered to be performance parameters.A computer program was developed in engineering equation-solver software for analysis.Influences of the PTC design parameters(solar irradiation,solar-beam incidence angle and velocity of the heat-transfer fluid in the absorber tube),turbine inlet pressure,condenser and evaporator temperature on system performance were discussed.Furthermore,the performance of the cogeneration system was also compared with and without PTCs.It was concluded that it was necessary to design the PTCs carefully in order to achieve better cogeneration performance.The highest values of exergy efficiency,thermal efficiency and exergy destruction of the cogeneration system were 92.9%,51.13%and 1437 kW,respectively,at 0.95 kW/m2 of solar irradiation based on working fluid R227ea,but the highest coefficient of performance was found to be 2.278 on the basis of working fluid R134a.It was also obtained from the results that PTCs accounted for 76.32%of the total exergy destruction of the overall system and the cogeneration system performed well without considering solar performance.展开更多
Although much has been done on the hemispheric asymmetry (or seasonal variations) of auroral hemispheric power (HP), the dependence of HP hemispheric asymmetry on solar cycle has not yet been studied. We have analyzed...Although much has been done on the hemispheric asymmetry (or seasonal variations) of auroral hemispheric power (HP), the dependence of HP hemispheric asymmetry on solar cycle has not yet been studied. We have analyzed data during 1979-2010 and investigated the dependence of HP hemispheric asymmetry/seasonal variation for the whole solar cycle. Here we show that (1) the hemispheric asymmetry of HP is positively correlated to the value of solar F10.7 with some time delay; (2) it is closely related to the coupling function between the solar wind and magnetosphere; and (3) the winter hemisphere receives more auroral power than the summer hemisphere for Kp ~0 to 6. The statistic results can be partly understood in the framework of the ionospheric conductivity feedback model. The similarity and differences between our results and previous results are discussed in the paper.展开更多
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
基金Project(2018YFB1501805)supported by the National Key Research and Development Program of ChinaProject(51406130)supported by the National Natural Science Foundation of ChinaProject(201604-504)supported by the Key Laboratory of Efficient Utilization of Low and Medium Grade Energy(Tianjin University),China
文摘Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output.
基金the National Natural Science Foundation of China(Nos.52374147,42372328,and U23B2091)National Key Research and Development Program of China(No.2023YFC3804200)Xinjiang Uygur Autonomous Region Science and Technology Major Program(No.2023A01002).
文摘Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.
基金National Natural Science Foundation ofChina(No.5 0 2 760 63 )
文摘With COP and dynamic characteristics in refrigeration cycle as criteria,a new metal hydride couple——LaNi 4.61 Mn 0.26 Al 0.13 /La 0.6 Y 0.4 Ni 4.8 Mn 0.2 was selected by establishing calculation procedure and metal hydride selection model.The experimental results show that the refigeration cycle of the selected couple is good in the performance.The recovered waste heat and refrigeration power from exhaust gas of several kinds of automobile are calculated by waste-heat formula,coefficient R Q and COP.Refrigeration cycle of the new couple can satisfy the air-conditioning requirement of truck and car and is not enough in passenger car,according to the respective cooling load.
基金support of Department of Mechanical,Industrial&Production,Automobile Engineering of the Delhi Technological University,New Delhi,India.
文摘In this study,a parametric analysis was performed of a supercritical organic Rankine cycle driven by solar parabolic trough collectors(PTCs)coupled with a vapour-compression refrigeration cycle simultaneously for cooling and power production.Thermal efficiency,exergy efficiency,exergy destruction and the coefficient of performance of the cogeneration system were considered to be performance parameters.A computer program was developed in engineering equation-solver software for analysis.Influences of the PTC design parameters(solar irradiation,solar-beam incidence angle and velocity of the heat-transfer fluid in the absorber tube),turbine inlet pressure,condenser and evaporator temperature on system performance were discussed.Furthermore,the performance of the cogeneration system was also compared with and without PTCs.It was concluded that it was necessary to design the PTCs carefully in order to achieve better cogeneration performance.The highest values of exergy efficiency,thermal efficiency and exergy destruction of the cogeneration system were 92.9%,51.13%and 1437 kW,respectively,at 0.95 kW/m2 of solar irradiation based on working fluid R227ea,but the highest coefficient of performance was found to be 2.278 on the basis of working fluid R134a.It was also obtained from the results that PTCs accounted for 76.32%of the total exergy destruction of the overall system and the cogeneration system performed well without considering solar performance.
基金supported by Ocean Public Welfare Scientific Research Project, State Oceanic Administration People’s Republic of China (201005017)the National Basic Research Program of China(2011CB811404)
文摘Although much has been done on the hemispheric asymmetry (or seasonal variations) of auroral hemispheric power (HP), the dependence of HP hemispheric asymmetry on solar cycle has not yet been studied. We have analyzed data during 1979-2010 and investigated the dependence of HP hemispheric asymmetry/seasonal variation for the whole solar cycle. Here we show that (1) the hemispheric asymmetry of HP is positively correlated to the value of solar F10.7 with some time delay; (2) it is closely related to the coupling function between the solar wind and magnetosphere; and (3) the winter hemisphere receives more auroral power than the summer hemisphere for Kp ~0 to 6. The statistic results can be partly understood in the framework of the ionospheric conductivity feedback model. The similarity and differences between our results and previous results are discussed in the paper.