Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the inje...Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions.展开更多
The silt soft soil in Nansha District of Guangzhou was the softest soft soil in China. It had the characteristics of high natural water content, high compressibility, long consolidation time, and complex layered distr...The silt soft soil in Nansha District of Guangzhou was the softest soft soil in China. It had the characteristics of high natural water content, high compressibility, long consolidation time, and complex layered distribution of soil layers. These characteristics formed the clogging characteristics of silt soft soil, which greatly increased the construction difficulty and hindered the construction progress. Therefore, based on the basic physical and mechanical properties of silt soft soil in Nansha District of Guangzhou, this paper evaluated the clogging characteristics of three silt soft soil areas in Nansha District of Guangzhou through long-term permeability test, and carried out scanning electron microscope test to explore the influence of different parameters and microstructure on the clogging difficulty of silt soft soil. The results showed that the silt soft soil Zone I and Zone II (shallow layer) in Nansha District of Guangzhou were divided into slight siltation levels, and the silt soft soil Zone III (deep layer) was mild siltation level. Large pores were widely distributed in shallow silt soft soil, while the continuity of large pores in deep silt soft soil was poor. The migration of fine particles that failed to establish contact with surrounding particles in the soil blocks the small pores of seepage and thus produces siltation.展开更多
The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on th...The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on the contact stress and temperature,there are some limitations in analyzing the contact characteristics using only the contact resistance.In this paper,the contact characteristics of the augmented railgun are analyzed by the combination of contact resistance and sliding friction coefficient.Firstly,the theoretical calculation model of the contact resistance and friction coefficient of the augmented electromagnetic railgun is established.Then the contact resistance and friction coefficient are calculated by the measured values of the muzzle voltage,rail current and armature displacement.Finally,the contact characteristics are analyzed according to the features of the waveforms of the contact resistance and the friction coefficient,and the analysis conclusions are verified by experimental rail images.The results showed that:the aluminum melt film gradually formed on the contact surface reduces the contact resistance and the friction coefficient;the wear and erosion of the armature cause deterioration of the contact state;after the transition,the reliability of the sliding contact between the armature and rails decreases,resulting in an increase in contact resistance.展开更多
The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this ...The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this paper,the influence of structural parameters of the turbocharger floating bearing on its dynamic characteristic coefficientsis systematically investigated based on the theories of hydrodynamic lubrication and tribology.The influence of clearance ratio on eccentricity and the influence of internal to external radius ratios,and Sommerfeld number were analyzed.A new formula of responding characteristics of the oil film force caused by the displacement or velocity disturbance was deduced near an equilibrium in the steady state.Applying the newly developed formula,the dynamic characteristic was studied for floating bearings.Regularity for change of oil film stiffness and damping was analyzed with the structural parameters of floating bearing such as radius ratios and eccentricity.It has been found that the clearance ratio increases with eccentricity when the radius ratio is unchanged.The eccentricity decreases with the internal to external radius ratio of floating rings when the clearance ratio is constant.The absolute value of total principal stiffness and total main damping decrease with the clearance ratio and radius ratio of floating rings when the total cross damping is stable.The results and findings in this paper can contribute to nonlinear dynamics designs of turbocharger rotor-bearing systems.展开更多
In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influen...In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influence coefficient is acquired by means of the coordinate transformation,combining the D 'Alembert 's principle with Dynamic-Static method,the dynamic characteristic analysis is completed finally. Moreover,specific calculating examples are adopted to verify the effectiveness of proposed method,and the result shows that the movement of each component of scissors unit mechanism is more smooth during initial deployment stage,however,when the configuration angle θ of unit mechanism is approaching π,some comparative large variations would appear on movement parameters and hinge constraint force.展开更多
One of the primary difficulties in using powered parafoil(PPF) systems is the lack of effective trajectory tracking controllers since the trajectory tracking control is the essential operation for PPF to accomplish au...One of the primary difficulties in using powered parafoil(PPF) systems is the lack of effective trajectory tracking controllers since the trajectory tracking control is the essential operation for PPF to accomplish autonomous tasks. The characteristic model(CM) based all-coefficient adaptive control(ACAC) designed for PPF systems in horizontal and vertical trajectory control is proposed. The method is easy to use and convenient to adjust and test. Just a few parameters are adapted during the control process. In application, vertical and horizontal CMs are designed and ACAC controllers are constructed to control vertical altitude and horizontal trajectory of PPF based on the proposed CMs, respectively. Result analysis of different simulations shows that the applied ACAC control method is effective for trajectory tracking of the PPF systems and the approach guarantees the transient performance of the PPF systems with better disturbance rejection ability.展开更多
It is shown that the nonideality coefficient m actually depends on the electron temperature Te, and the hole temperature Th. We get more general expression for the nonideality coefficient, taking into account the conc...It is shown that the nonideality coefficient m actually depends on the electron temperature Te, and the hole temperature Th. We get more general expression for the nonideality coefficient, taking into account the concentration of electrons and holes, as well as their temperature, coefficient and diffusion length, the temperature of the phonons, the applied voltage, and the height of the potential barrier.展开更多
The mass attenuation coefficients of indium are systematically measured byusing the characteristic X-rays from elemental or compound targets excited by energeticproton in the X-ray energy range 2.6 to 29.1 keV.The acc...The mass attenuation coefficients of indium are systematically measured byusing the characteristic X-rays from elemental or compound targets excited by energeticproton in the X-ray energy range 2.6 to 29.1 keV.The accuracy of experimental data isimproved to be±1%.The photoeletric cross sections are obtained by subtracting thescattering cross section from the measured total cross sections.Comparisons of our ex-perimental results with the available data of earlier investigations as well as with thetheoretical calculations are presented and discussed.展开更多
The effects of excess air coefficients on the combustion characteristics have been experimentally investigated by means of a constant volume combustion bomb.N-butanol was tested as the research fuel at different air-f...The effects of excess air coefficients on the combustion characteristics have been experimentally investigated by means of a constant volume combustion bomb.N-butanol was tested as the research fuel at different air-fuel equivalence ratios.Through the discussion of the combustion pressure,the combustion temperature,accumulated heat release,ignition delay and combustion duration,the effects of the excess air coefficient on combustion characteristics is clarified.Experimental results show that near the theoretical air-fuel ratio,the combustion rate is the fastest accompanying with shorter combustion duration while the combustion pressure and temperature reach the maximum.With increase or decrease of the excess air coefficient the combustion pressure,the temperature and the heat release reduce.Simultaneously,the combustion timing is deferred and the combustion duration becomes longer.展开更多
In this work, system of parabolic equations with discontinuous coefficients is studied. The domain decomposition method modified by a characteristic finite element procedure is applied. A function is defined to approx...In this work, system of parabolic equations with discontinuous coefficients is studied. The domain decomposition method modified by a characteristic finite element procedure is applied. A function is defined to approximate the fluxes on inner boundaries by using the solution at the previous level. Thus the parallelism is achieved. Convergence analysis and error estimate are also presented.展开更多
High-strength pervious concrete(HSPC) with porosity ranging from 0.08% to 2.011% was prepared. The mechanical properties and rainstorm waterlogging resistance of HSPC were evaluated,and a design method of HSPC pore ch...High-strength pervious concrete(HSPC) with porosity ranging from 0.08% to 2.011% was prepared. The mechanical properties and rainstorm waterlogging resistance of HSPC were evaluated,and a design method of HSPC pore characteristics(porosity and pore diameter) based on the mechanical properties and rainstorm waterlogging resistance was proposed. The results showed that the reduction of effective cross-sectional area caused by artificial channels was the main factor affecting flexural strength but had limited influence on compressive strength. Compared with the concrete matrix without artificial channels,the compressive strength of HSPC with porosity of 2.011% decreased by 7.4%, while the flexural strength decreased by 48.3%. The permeability coefficient of HSPC can reach 16.35 mm/s even at low porosity(2.011%).HSPC can meet the requirements of no rainstorm waterlogging, even if exposed to 100-year rainstorms. When the mechanical properties and rainstorm waterlogging resistance are compromised, the recommended porosity ranges from 1.1% to 3.5%, and the recommended pore diameter ranges from 0.8 to 2.7 mm.展开更多
For obtaining the drying curve of powder under fluidized drying, a normal fluidized-bed dryer is designed to study the drying kinetics of PVC (polyvinyl chloride) powder in the experiment. A new measure system is de...For obtaining the drying curve of powder under fluidized drying, a normal fluidized-bed dryer is designed to study the drying kinetics of PVC (polyvinyl chloride) powder in the experiment. A new measure system is derived for drying dynamics testing. In the small fluidized-bed dryer, fluidization parameter of PVC powder is tested, and the operating air velocity can be chosen in the range of 0. 41 to 0. 55 m/s. Accordingly, the fluidized number Ua/Umf is from 1.24 to 1.67. A promising drying model is used to describe the drying process, and then the characteristic drying curve of PVC powder derived from a suspension method can be expressed as f = [-0. 622 6 + 1. 254 6exp(2. 561 5Φ -0. 707 2) /[1 + exp(2. 561 5Φ -0. 707 2)] Based on the experiments, the critical moisture content xc and the mass transfer coefficient K are determined to be 0. 02 kg/kg and 6. 0 × 10^-4 kg/( m2 · s), respectively. The experimental results in the small fluidized-bed dryer are similar to those of the real fluidized drying process, so the descried method can also be used in determining drying kinetics of powder materials such as PVC powder.展开更多
To make clear the emission characteristics of soil N20 from typical green- house vegetable fields in North China, an experiment was conducted in greenhouse tomato field in Shouguang city, Shandong province, China's ...To make clear the emission characteristics of soil N20 from typical green- house vegetable fields in North China, an experiment was conducted in greenhouse tomato field in Shouguang city, Shandong province, China's "Home of Vegetables". The N2O fluxes were observed in four experimental treatments, as follows: none N fertilizer (CK), single organic fertilizer (OM), conventional fertilization (FP) and opti- mized and reduced nitrogen fertilization (OPT), by a close chamber-gas chromato- graph method. The effects of different fertilization treatments on N2O emission and tomato yield were analyzed. The results showed that following the fertilization and ir- rigation, the pulsed emissions of N2O were measured. The N2O emission peak ap- peared after basal fertilizer application and irrigation and could be maintained for about 20 days. While the N2O emission peak caused by topdressing was smaller and last only 3-5 days. The statistical analysis showed that the N2O fluxes were affected by air temperature, soil temperature and WFPS at soil depth of 3 cm. The total contents of soil N2O fluxes had significant differences among experimental groups. The total content orderly was FP of 14. 77 kg/hm^2, OPT of 9. 73 kg/hm^2, OM of 6.84 kg/hm^2 and CK of 2.37 kg/hm^2. The N~:~ emission coefficient ranged from 0.83%-1.10%,which was close to or more than the recommended value (1.0%) by IPCC. Compared with the FP treatment, the tomato yield in OPT treatment, whose application rate of chemical N fertilizer decreased by about 60%, increased by 2.2%. Under the current management measures, the reasonable reduction on ap- plicaUon rate of organic manure and chemical nitrogen fertilizer could effectively re- duce the N=O emissions in greenhouse vegetable fields.展开更多
Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics mo...Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.展开更多
As a simplified model of artificial reefs, a series of plate models punched with square or circular openings are designed to investigate the effects of openings on the hydrodynamic characteristics of artificial reefs....As a simplified model of artificial reefs, a series of plate models punched with square or circular openings are designed to investigate the effects of openings on the hydrodynamic characteristics of artificial reefs. The models are grouped by various opening numbers and opening-area ratios. They are physically tested in a water flume or used in the numerical simulation to obtain the drag force in the uniform flow with different speeds. The simulation results are found in good agreement with the experimental measurements. By the non-dimensional analysis, the drag coefficient specified to each model is achieved and the effects of openings are examined. It is found that the key factor affecting the drag coefficient is the open-area ratio. Generally, the drag coefficient is a linear function of the open area ratio with a minus slope. The empirical formulae for the square and circular openings respectively are deduced by means of the multiple regression analysis based on the measured and numerical data. They will be good references for the design of new artificial reefs. As a result of numerical simulation, the vorticity contours and pressure distribution are also presented in this work to better understand the hydrodynamic characteristics of different models.展开更多
The electron swarm parameters including the density-normalized effective ionization coefficients(α-η)/N and the electron drift velocities V e are calculated for a gas mixture of CF3I with N2 and CO2 by solving the...The electron swarm parameters including the density-normalized effective ionization coefficients(α-η)/N and the electron drift velocities V e are calculated for a gas mixture of CF3I with N2 and CO2 by solving the Boltzmann equation in the condition of a steady-state Townsend(SST) experiment.The overall density-reduced electric field strength is from 100 Td to 1000 Td(1 Td = 10-17V·cm2),while the CF3I content k in the gas mixture can be varied over the range from 0% to 100%.From the variation of(αη)/N with the CF3I mixture ratio k,the limiting field strength(E/N) lim for each CF3I concentration is derived.It is found that for the mixtures with 70% CF3I,the values of(E/N) lim are essentially the same as that for pure SF 6.Additionally,the global warming potential(GWP) and the liquefaction temperature of the gas mixtures are also taken into account to evaluate the possibility of application in the gas insulation of power equipment.展开更多
A 3D finite element vibration model of water turbine generator set is constructed considering the coupling with hydropower house foundation. The method of determining guide bearing dynamic characteristic coefficients ...A 3D finite element vibration model of water turbine generator set is constructed considering the coupling with hydropower house foundation. The method of determining guide bearing dynamic characteristic coefficients according to the swing of the shaft is proposed, which can be used for studying the self-vibration characteristic and stability of the water turbine generator set. The method fully considers the complex supporting boundary and loading conditions; especially the nonlinear variation of guide bearing dynamic characteristic coefficients and the coupling effect of the whole power-house foundation. The swing and critical rotating speed of an actual generator set shaft system are calculated. The simulated results of the generator set indicate that the coupling vibration model and calculation method presented in this paper are suitable for stability analysis of the water turbine generator set.展开更多
In order to improve the threading stability and the head thickness precision in tandem hot rolling process, an adaptive threading strategy was proposed. The proposed strategy was realized by the rolling characteristic...In order to improve the threading stability and the head thickness precision in tandem hot rolling process, an adaptive threading strategy was proposed. The proposed strategy was realized by the rolling characteristics analysis, and factors which affect the rolling force and the final thickness were determined and analyzed based on the influence coefficients calculation process. An objective function consisting of the influenced factors was founded, and the disturbance quantity was obtained by minimizing the function with the Nelder-Mead simplex method, and the proposed adaptive threading strategy was realized based on the calculation results. The adaptive threading strategy has been applied to one 7-stand hot tandem mill successfully, actual statistics data show that the predicted rolling force prediction in the range of +/- 5.0% is improved to 97.8%, the head thickness precision in the range of +/- 35 mu m is improved to 98.5%, and the threading stability and the head thickness precision are enhanced to a high level.展开更多
The mechanically choked orifice plate (MCOP) is a new type of device for flow control by which choking conditionsfor incompressible fluids can be obtained with relatively small pressure losses. Given the lack of relev...The mechanically choked orifice plate (MCOP) is a new type of device for flow control by which choking conditionsfor incompressible fluids can be obtained with relatively small pressure losses. Given the lack of relevant results anddata in the literature, in the present study, we concentrate on the experimental determination of the flow coefficientfor the annular orifice, the pressure distribution in the MCOP, and the characteristics of the choked flow itself. Asconfirmed by the experimental results, the Reynolds number, the orifice plate thickness, the plug taper, and theeccentricity have an obvious influence on the aforementioned flow coefficient. The pressure drop in the MCOPis mainly generated near the orifice plate, and the pressure upstream of the orifice plate is slightly reduced in theflow direction, while the pressure downstream of the orifice plate displays a recovery trend. The choked flow rateof the MCOP can be adjusted by replacing the spring with a maximum flow control deviation of 4.91%.展开更多
文摘Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions.
文摘The silt soft soil in Nansha District of Guangzhou was the softest soft soil in China. It had the characteristics of high natural water content, high compressibility, long consolidation time, and complex layered distribution of soil layers. These characteristics formed the clogging characteristics of silt soft soil, which greatly increased the construction difficulty and hindered the construction progress. Therefore, based on the basic physical and mechanical properties of silt soft soil in Nansha District of Guangzhou, this paper evaluated the clogging characteristics of three silt soft soil areas in Nansha District of Guangzhou through long-term permeability test, and carried out scanning electron microscope test to explore the influence of different parameters and microstructure on the clogging difficulty of silt soft soil. The results showed that the silt soft soil Zone I and Zone II (shallow layer) in Nansha District of Guangzhou were divided into slight siltation levels, and the silt soft soil Zone III (deep layer) was mild siltation level. Large pores were widely distributed in shallow silt soft soil, while the continuity of large pores in deep silt soft soil was poor. The migration of fine particles that failed to establish contact with surrounding particles in the soil blocks the small pores of seepage and thus produces siltation.
文摘The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on the contact stress and temperature,there are some limitations in analyzing the contact characteristics using only the contact resistance.In this paper,the contact characteristics of the augmented railgun are analyzed by the combination of contact resistance and sliding friction coefficient.Firstly,the theoretical calculation model of the contact resistance and friction coefficient of the augmented electromagnetic railgun is established.Then the contact resistance and friction coefficient are calculated by the measured values of the muzzle voltage,rail current and armature displacement.Finally,the contact characteristics are analyzed according to the features of the waveforms of the contact resistance and the friction coefficient,and the analysis conclusions are verified by experimental rail images.The results showed that:the aluminum melt film gradually formed on the contact surface reduces the contact resistance and the friction coefficient;the wear and erosion of the armature cause deterioration of the contact state;after the transition,the reliability of the sliding contact between the armature and rails decreases,resulting in an increase in contact resistance.
基金Supported by the Natural Science Foundation of Shanxi Province Project(2012011023-2)
文摘The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this paper,the influence of structural parameters of the turbocharger floating bearing on its dynamic characteristic coefficientsis systematically investigated based on the theories of hydrodynamic lubrication and tribology.The influence of clearance ratio on eccentricity and the influence of internal to external radius ratios,and Sommerfeld number were analyzed.A new formula of responding characteristics of the oil film force caused by the displacement or velocity disturbance was deduced near an equilibrium in the steady state.Applying the newly developed formula,the dynamic characteristic was studied for floating bearings.Regularity for change of oil film stiffness and damping was analyzed with the structural parameters of floating bearing such as radius ratios and eccentricity.It has been found that the clearance ratio increases with eccentricity when the radius ratio is unchanged.The eccentricity decreases with the internal to external radius ratio of floating rings when the clearance ratio is constant.The absolute value of total principal stiffness and total main damping decrease with the clearance ratio and radius ratio of floating rings when the total cross damping is stable.The results and findings in this paper can contribute to nonlinear dynamics designs of turbocharger rotor-bearing systems.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51175422)
文摘In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influence coefficient is acquired by means of the coordinate transformation,combining the D 'Alembert 's principle with Dynamic-Static method,the dynamic characteristic analysis is completed finally. Moreover,specific calculating examples are adopted to verify the effectiveness of proposed method,and the result shows that the movement of each component of scissors unit mechanism is more smooth during initial deployment stage,however,when the configuration angle θ of unit mechanism is approaching π,some comparative large variations would appear on movement parameters and hinge constraint force.
基金Project(61273138)supported by the National Natural Science Foundation of ChinaProject(14JCZDJC39300)supported by the Key Fund of Tianjin,China
文摘One of the primary difficulties in using powered parafoil(PPF) systems is the lack of effective trajectory tracking controllers since the trajectory tracking control is the essential operation for PPF to accomplish autonomous tasks. The characteristic model(CM) based all-coefficient adaptive control(ACAC) designed for PPF systems in horizontal and vertical trajectory control is proposed. The method is easy to use and convenient to adjust and test. Just a few parameters are adapted during the control process. In application, vertical and horizontal CMs are designed and ACAC controllers are constructed to control vertical altitude and horizontal trajectory of PPF based on the proposed CMs, respectively. Result analysis of different simulations shows that the applied ACAC control method is effective for trajectory tracking of the PPF systems and the approach guarantees the transient performance of the PPF systems with better disturbance rejection ability.
文摘It is shown that the nonideality coefficient m actually depends on the electron temperature Te, and the hole temperature Th. We get more general expression for the nonideality coefficient, taking into account the concentration of electrons and holes, as well as their temperature, coefficient and diffusion length, the temperature of the phonons, the applied voltage, and the height of the potential barrier.
文摘The mass attenuation coefficients of indium are systematically measured byusing the characteristic X-rays from elemental or compound targets excited by energeticproton in the X-ray energy range 2.6 to 29.1 keV.The accuracy of experimental data isimproved to be±1%.The photoeletric cross sections are obtained by subtracting thescattering cross section from the measured total cross sections.Comparisons of our ex-perimental results with the available data of earlier investigations as well as with thetheoretical calculations are presented and discussed.
文摘The effects of excess air coefficients on the combustion characteristics have been experimentally investigated by means of a constant volume combustion bomb.N-butanol was tested as the research fuel at different air-fuel equivalence ratios.Through the discussion of the combustion pressure,the combustion temperature,accumulated heat release,ignition delay and combustion duration,the effects of the excess air coefficient on combustion characteristics is clarified.Experimental results show that near the theoretical air-fuel ratio,the combustion rate is the fastest accompanying with shorter combustion duration while the combustion pressure and temperature reach the maximum.With increase or decrease of the excess air coefficient the combustion pressure,the temperature and the heat release reduce.Simultaneously,the combustion timing is deferred and the combustion duration becomes longer.
基金This work was supported by the Youth Development Foundation of Shandong University at Weihai (Grant No. Z200607).
文摘In this work, system of parabolic equations with discontinuous coefficients is studied. The domain decomposition method modified by a characteristic finite element procedure is applied. A function is defined to approximate the fluxes on inner boundaries by using the solution at the previous level. Thus the parallelism is achieved. Convergence analysis and error estimate are also presented.
基金Funded by the National Natural Science Foundation of China (No. 51878081)Natural Science Foundation of Jiangsu Province (No. BK20220626)+1 种基金Changzhou Leading Innovative Talent Introduction and Cultivation Project (No. CQ20210085)Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX21_2847)。
文摘High-strength pervious concrete(HSPC) with porosity ranging from 0.08% to 2.011% was prepared. The mechanical properties and rainstorm waterlogging resistance of HSPC were evaluated,and a design method of HSPC pore characteristics(porosity and pore diameter) based on the mechanical properties and rainstorm waterlogging resistance was proposed. The results showed that the reduction of effective cross-sectional area caused by artificial channels was the main factor affecting flexural strength but had limited influence on compressive strength. Compared with the concrete matrix without artificial channels,the compressive strength of HSPC with porosity of 2.011% decreased by 7.4%, while the flexural strength decreased by 48.3%. The permeability coefficient of HSPC can reach 16.35 mm/s even at low porosity(2.011%).HSPC can meet the requirements of no rainstorm waterlogging, even if exposed to 100-year rainstorms. When the mechanical properties and rainstorm waterlogging resistance are compromised, the recommended porosity ranges from 1.1% to 3.5%, and the recommended pore diameter ranges from 0.8 to 2.7 mm.
文摘For obtaining the drying curve of powder under fluidized drying, a normal fluidized-bed dryer is designed to study the drying kinetics of PVC (polyvinyl chloride) powder in the experiment. A new measure system is derived for drying dynamics testing. In the small fluidized-bed dryer, fluidization parameter of PVC powder is tested, and the operating air velocity can be chosen in the range of 0. 41 to 0. 55 m/s. Accordingly, the fluidized number Ua/Umf is from 1.24 to 1.67. A promising drying model is used to describe the drying process, and then the characteristic drying curve of PVC powder derived from a suspension method can be expressed as f = [-0. 622 6 + 1. 254 6exp(2. 561 5Φ -0. 707 2) /[1 + exp(2. 561 5Φ -0. 707 2)] Based on the experiments, the critical moisture content xc and the mass transfer coefficient K are determined to be 0. 02 kg/kg and 6. 0 × 10^-4 kg/( m2 · s), respectively. The experimental results in the small fluidized-bed dryer are similar to those of the real fluidized drying process, so the descried method can also be used in determining drying kinetics of powder materials such as PVC powder.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201103039)Shandong Provincial Natural Science Foundation,China(ZR2013DQ023)+1 种基金Science and Technology Development Plan Project of Shandong Province(2013GNC11204)Major Agricultural Application Technology Innovation Project of Shandong Province(Study on Environmental Regulation and Fertilizer Application Techniques for High Yield and High Efficiency Utilization of Greenhouse Tomato)~~
文摘To make clear the emission characteristics of soil N20 from typical green- house vegetable fields in North China, an experiment was conducted in greenhouse tomato field in Shouguang city, Shandong province, China's "Home of Vegetables". The N2O fluxes were observed in four experimental treatments, as follows: none N fertilizer (CK), single organic fertilizer (OM), conventional fertilization (FP) and opti- mized and reduced nitrogen fertilization (OPT), by a close chamber-gas chromato- graph method. The effects of different fertilization treatments on N2O emission and tomato yield were analyzed. The results showed that following the fertilization and ir- rigation, the pulsed emissions of N2O were measured. The N2O emission peak ap- peared after basal fertilizer application and irrigation and could be maintained for about 20 days. While the N2O emission peak caused by topdressing was smaller and last only 3-5 days. The statistical analysis showed that the N2O fluxes were affected by air temperature, soil temperature and WFPS at soil depth of 3 cm. The total contents of soil N2O fluxes had significant differences among experimental groups. The total content orderly was FP of 14. 77 kg/hm^2, OPT of 9. 73 kg/hm^2, OM of 6.84 kg/hm^2 and CK of 2.37 kg/hm^2. The N~:~ emission coefficient ranged from 0.83%-1.10%,which was close to or more than the recommended value (1.0%) by IPCC. Compared with the FP treatment, the tomato yield in OPT treatment, whose application rate of chemical N fertilizer decreased by about 60%, increased by 2.2%. Under the current management measures, the reasonable reduction on ap- plicaUon rate of organic manure and chemical nitrogen fertilizer could effectively re- duce the N=O emissions in greenhouse vegetable fields.
文摘Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.
基金supported by Shandong Provincial Oceanic and Fishery Department (Ecological Simulation Test of the Offshore Area in Shandong Peninsula)the Primary Research and Development Program of Shandong Province (Nos. 2016CYJS04A01 and 2017CXGC0107)
文摘As a simplified model of artificial reefs, a series of plate models punched with square or circular openings are designed to investigate the effects of openings on the hydrodynamic characteristics of artificial reefs. The models are grouped by various opening numbers and opening-area ratios. They are physically tested in a water flume or used in the numerical simulation to obtain the drag force in the uniform flow with different speeds. The simulation results are found in good agreement with the experimental measurements. By the non-dimensional analysis, the drag coefficient specified to each model is achieved and the effects of openings are examined. It is found that the key factor affecting the drag coefficient is the open-area ratio. Generally, the drag coefficient is a linear function of the open area ratio with a minus slope. The empirical formulae for the square and circular openings respectively are deduced by means of the multiple regression analysis based on the measured and numerical data. They will be good references for the design of new artificial reefs. As a result of numerical simulation, the vorticity contours and pressure distribution are also presented in this work to better understand the hydrodynamic characteristics of different models.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51177101)
文摘The electron swarm parameters including the density-normalized effective ionization coefficients(α-η)/N and the electron drift velocities V e are calculated for a gas mixture of CF3I with N2 and CO2 by solving the Boltzmann equation in the condition of a steady-state Townsend(SST) experiment.The overall density-reduced electric field strength is from 100 Td to 1000 Td(1 Td = 10-17V·cm2),while the CF3I content k in the gas mixture can be varied over the range from 0% to 100%.From the variation of(αη)/N with the CF3I mixture ratio k,the limiting field strength(E/N) lim for each CF3I concentration is derived.It is found that for the mixtures with 70% CF3I,the values of(E/N) lim are essentially the same as that for pure SF 6.Additionally,the global warming potential(GWP) and the liquefaction temperature of the gas mixtures are also taken into account to evaluate the possibility of application in the gas insulation of power equipment.
基金supported by National Natural Science Foundation of China (Grant No. 50679009)
文摘A 3D finite element vibration model of water turbine generator set is constructed considering the coupling with hydropower house foundation. The method of determining guide bearing dynamic characteristic coefficients according to the swing of the shaft is proposed, which can be used for studying the self-vibration characteristic and stability of the water turbine generator set. The method fully considers the complex supporting boundary and loading conditions; especially the nonlinear variation of guide bearing dynamic characteristic coefficients and the coupling effect of the whole power-house foundation. The swing and critical rotating speed of an actual generator set shaft system are calculated. The simulated results of the generator set indicate that the coupling vibration model and calculation method presented in this paper are suitable for stability analysis of the water turbine generator set.
基金Project(51504061)supported by the National Natural Science Foundation of China
文摘In order to improve the threading stability and the head thickness precision in tandem hot rolling process, an adaptive threading strategy was proposed. The proposed strategy was realized by the rolling characteristics analysis, and factors which affect the rolling force and the final thickness were determined and analyzed based on the influence coefficients calculation process. An objective function consisting of the influenced factors was founded, and the disturbance quantity was obtained by minimizing the function with the Nelder-Mead simplex method, and the proposed adaptive threading strategy was realized based on the calculation results. The adaptive threading strategy has been applied to one 7-stand hot tandem mill successfully, actual statistics data show that the predicted rolling force prediction in the range of +/- 5.0% is improved to 97.8%, the head thickness precision in the range of +/- 35 mu m is improved to 98.5%, and the threading stability and the head thickness precision are enhanced to a high level.
基金the Foundation of the Educational Commission of Hubei Province of China[Grant No.Q20191310]。
文摘The mechanically choked orifice plate (MCOP) is a new type of device for flow control by which choking conditionsfor incompressible fluids can be obtained with relatively small pressure losses. Given the lack of relevant results anddata in the literature, in the present study, we concentrate on the experimental determination of the flow coefficientfor the annular orifice, the pressure distribution in the MCOP, and the characteristics of the choked flow itself. Asconfirmed by the experimental results, the Reynolds number, the orifice plate thickness, the plug taper, and theeccentricity have an obvious influence on the aforementioned flow coefficient. The pressure drop in the MCOPis mainly generated near the orifice plate, and the pressure upstream of the orifice plate is slightly reduced in theflow direction, while the pressure downstream of the orifice plate displays a recovery trend. The choked flow rateof the MCOP can be adjusted by replacing the spring with a maximum flow control deviation of 4.91%.