Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood rou...Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood routing.While their use may guarantee a significant reduction of the computational effort,it is mandatory to define the conditions in which they may be confidently applied.The present paper investigates the applicability conditions of the kinematic,diffusion and quasisteady dynamic shallow wave models for mud flows of power-law fluids.The power-law model describes in an adequate and convenient way fluids that at low shear rates fluids do not posses yield stress,such as clay or kaolin suspensions,which are frequently encountered in Chinese rivers.In the framework of a linear analysis,the propagation characteristics of a periodic perturbation of an initial steady uniform flow predicted by the simplified models are compared with those of the full dynamic one.Based on this comparison,applicability criteria for the different wave approximations for mud flood of power-law fluids are derived.The presented results provide guidelines for selecting the appropriate approximation for a given flow problem,and therefore they may represent a useful tool for engineering predictions.展开更多
-A nonlinear model for the stress-strain behaviour of normally consolidated clays is presented based on the experimental results. It is indicated that the volume strain under pure shear is a power function of stress r...-A nonlinear model for the stress-strain behaviour of normally consolidated clays is presented based on the experimental results. It is indicated that the volume strain under pure shear is a power function of stress ratio and the normalized stress-strain curve is a standard hyperbola. According to the model, the coefficient of pore pressure induced by shear stress and the critical stress ratio which governs the influence of the negative dilatancy are suggested. It is shown by some triaxial tests that the proposed model can be used to study the negative dilatancy and to describe the stress-strain-pore pressure adequately for soft clays.展开更多
A general shape of tensile stress-strain curves of woven fabrics is first recognised by puttingtested and predicted results together.An exponential function with two parameters is then selectedfor the prediction of te...A general shape of tensile stress-strain curves of woven fabrics is first recognised by puttingtested and predicted results together.An exponential function with two parameters is then selectedfor the prediction of tensile stress-strain relationship.The predicted results by using the proposedfunction show excellent agreement with experimental data.展开更多
The destruction of recombinant bamboo depends on many factors,and the complex ambient temperature is an important factor affecting its basic mechanical properties.To investigate the failure mechanism and stress–strai...The destruction of recombinant bamboo depends on many factors,and the complex ambient temperature is an important factor affecting its basic mechanical properties.To investigate the failure mechanism and stress–strain relationship of recombinant bamboo at different temperatures,eighteen tensile specimens of recombinant bamboo were tested.The results showed that with increasing ambient temperature,the typical failure modes of recombinant bamboo were flush fracture,toothed failure,and serrated failure.The ultimate tensile strength,ultimate strain and elastic modulus of recombinant bamboo decreased with increasing temperature,and the ultimate tensile stress decreased from 154.07 to 96.55 MPa,a decrease of 37.33%,and the ultimate strain decreased from 0.011 to 0.008,a decrease of 26.57%.Based on the Ramberg-Osgood model and the pseudo‒elastic design method,a predictive model was established for the tensile stress–strain relationship of recombinant bamboo considering the temperature level.The model can accurately evaluate the tensile stress–strain relationship of recombinant bamboo under different temperature conditions.展开更多
In order to investigate the basic mechanical properties and stress strain relationship model for bamboo scrimber manufactured based on a new technique,a large quantities of experiments have been carried out.Based on t...In order to investigate the basic mechanical properties and stress strain relationship model for bamboo scrimber manufactured based on a new technique,a large quantities of experiments have been carried out.Based on the analysis of the test results,the following conclusions can be drawn.Two main typical failure modes were classified for bamboo scrimber specimens both under tension parallel to grain and tension perpendicular to grain.Brittle failure happened for all tensile tests.The slope values for the elastic stages have bigger discreteness compared with those for the specimens under tensile parallel to grain.The failure modes for bamboo scrimber specimens under compression parallel to grain could be divided into four.Only one main failure mode happened both for the bending specimens and the shear specimens.With the COV values of 28.64 and 25.72 respectively,the values for the strength and elastic modulus under tensile perpendicular to grain have the largest discreteness for bamboo scrimber.From the point of CHV values,the relationship among the mechanical parameters for bamboo scrimber were proposed based on the test results.Compared with other green building materials,bamboo scrimber manufactured based on a new technique has better mechanical performance and could be used in construction area.Three stress strain relationship models which are four-linear model,quadratic function model,and cubic function model were proposed for bamboo scrimber specimens manufactured based on a new technique.The latter two models gives better prediction for stress strain relationship in elastic plastic stage.展开更多
The paper presents a detailed analysis of experimental data in order to characterize the elastic properties of arteries.Such analysis would provide a good basis for evaluation of biomimetic vascular grafts.Since the l...The paper presents a detailed analysis of experimental data in order to characterize the elastic properties of arteries.Such analysis would provide a good basis for evaluation of biomimetic vascular grafts.Since the latter needs to exhibit similar properties of native tissue,it is important to accurately characterize the biomimetic sample in a large range of applied stresses. The stress-strain properties vary according to the specific pathology(e.g.arteriosclerosis,aneurism)and the tissue graft must be chosen correctly.Two models are proposed in this paper on the stress-strain characteristics.An extension for frequency-domain analysis is provided for one of the models.The comparison between vascular grafts and native tissue for carotid and thoracic arteries in pigs are in good agreement with results from literature.The proposed experimental method offers suitable parameters for identifying models which characterize both elasticity and stiffness properties of the analyzed tissues(stress-strain).The proposed models show good performance in characterizing the intrinsic material properties.展开更多
The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results i...The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results indicate that the peak stress, peak strain, secant modulus of the peak point and original point increase with the strength grade of RAC enhanced. On the contrary, the residual stress of RAC decreases with the strength grade enhancing, and the failure of RAC is often broken at the interface between the recycled aggregate and the mortar matrix. Finally, the constitutive model of stress-strain model of RAC has been constituted, and the results from the constitutive model of stress-strain meet the experiment results very well.展开更多
Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the h...Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is 7 = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypemetwork model shares the scale-flee and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems.展开更多
A one-dimensional sand-pile model (Manna model), which has a stochastic redistribution process, is studied both in discrete and continuous manners. The system evolves into a critical state after a transient period. A ...A one-dimensional sand-pile model (Manna model), which has a stochastic redistribution process, is studied both in discrete and continuous manners. The system evolves into a critical state after a transient period. A detailed analysis of the probability distribution of the avalanche size and duration is numerically investigated. Interestingly,contrary to the deterministic one-dimensional sand-pile model, where multifractal analysis works well, the analysis based on simple finite-size scaling is suited to fitting the data on the distribution of the avalanche size and duration. The exponents characterizing these probability distributions are measured. Scaling relations of these scaling exponents and their universality class are discussed.展开更多
The use of fibre-reinforced polymer(FRP)to confine concrete columns improves the strength and ductility of the columns by reducing passive lateral confinement pressure.Many numerical and analytical formulations have b...The use of fibre-reinforced polymer(FRP)to confine concrete columns improves the strength and ductility of the columns by reducing passive lateral confinement pressure.Many numerical and analytical formulations have been proposed in the literature to describe the compressive behaviour of FRP confined concrete under both monotonic and cyclic loads.However,the efect of a stress/strain level in the columns has not been well defined because of the lack of well-defined strategies of modeing and oversimplification of the model.This paper reviews the existing FRP combinations and the available numerical and analytical methods to determine the effectiveness of the adopted method.An effort has been made to examine the usage of FRP materials in column applications in exist-ing building regimes and highlights the possible future scopes to improve the use of FRP confined concrete in civil applications.展开更多
The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In...The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.展开更多
The transition between the elastic and plastic states is sharp in the classical plasticity theory. To overcome this problem, many constitutive models, such as multi-yield-surface model and two-surface model, have been...The transition between the elastic and plastic states is sharp in the classical plasticity theory. To overcome this problem, many constitutive models, such as multi-yield-surface model and two-surface model, have been developed. However, these models can not represent the true deformation process in a material. In order to capture nonlinear hardening behavior and smooth transition from elastic to plastic state, a general model of fuzzy plasticity is developed. On the basis of the theory of fuzzy sets and TAKAGI-SUGENO fuzzy model, a fuzzy plastic model for monotonic and cyclic loadings in one dimension is established and it is generalized to six dimensions and unsymmetric cycles. The proposed model uses a set of surfaces to partition the stress space with individual plastic modulus. The plastic modulus between two adjacent surfaces is determined by a membership function. By means of a finite number of partitioning surfaces, the fuzzy plastic model can provide with a more realistic and practical description of the materials behavior than the classical plasticity model. The validity of the fuzzy plastic model is investigated by comparing the predicted and experimental stress-strain responses of steels. It was found that the fuzzy plasticity has the ability to handle many practical problems that cannot be adequately analyzed by the conventional theory of plasticity.展开更多
The paper describes an energy-based constitutive model for sand, which is modified based on the modified plastic strain energy approach, represented by a unique relationship between the modified plastic strain energy ...The paper describes an energy-based constitutive model for sand, which is modified based on the modified plastic strain energy approach, represented by a unique relationship between the modified plastic strain energy and a stress parameter, independent of stress history. The modified plastic strain energy approach was developed based on results from a series of drained plastic strain compression tests along various stress paths on saturated dense Toyoura sand with accurate stress and strain measurements. The proposed model is coupled with an isotropically work-hardening and softening, non-associtated, elasto-plastic material description. The constitutive model concerns the inherent and stress system-induced cross-anisotropic elastic deformation properties of sand. It is capable of simulating the deformation characteristics of stress history and stress path, the effects of pressure level, anisotropic strength and void ratio, and the strain localization.展开更多
This paper presents a rheology-based approach to animate realistic face model. The dynamic and biorheological characteristics of the force member (muscles) and stressed member (face) are considered. The stressed f...This paper presents a rheology-based approach to animate realistic face model. The dynamic and biorheological characteristics of the force member (muscles) and stressed member (face) are considered. The stressed face can be modeled as viscoelastic bodies with the Hooke bodies and Newton bodies connected in a composite series-parallel manner. Then, the stress-strain relationship is derived, and the constitutive equations established. Using these constitutive equations, the face model can be animated with the force generated by muscles. Experimental results show that this method can realistically simulate the mechanical properties and motion characteristics of human face, and performance of this method is satisfactory.展开更多
We introduce a modified small-world network adding new links with nonlinearly preferential connectioninstead of adding randomly,then we apply Bak-Sneppen(BS)evolution model on this network.We study severalimportant st...We introduce a modified small-world network adding new links with nonlinearly preferential connectioninstead of adding randomly,then we apply Bak-Sneppen(BS)evolution model on this network.We study severalimportant structural properties of our network such as the distribution of link-degree,the maximum link-degree,and thegth of the shortest path.We further argue several dynamical characteristics of the model such as the important criticalvalue f_c,the f_0 avalanche,and the mutating condition,and find that those characteristics show panticular behaviors.展开更多
The nanoindentations were applied to island-shaped regions with metal-induced Si crystallizations. The experimental stress-strain relationship is obtained from the load-depth profile in order to investigate the critic...The nanoindentations were applied to island-shaped regions with metal-induced Si crystallizations. The experimental stress-strain relationship is obtained from the load-depth profile in order to investigate the critical stresses arising at various phase transitions. The stress and strain values at various indentation depths are applied to determine the Gibbs free energy at various phases. The intersections of the Gibbs free energy lines are used to determine the possible paths of phase transitions arising at various indentation depths. All the critical contact stresses corresponding to the various phase transitions at four annealing temperatures were found to be consistent with the experimental results.展开更多
A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconse...A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconservative: the result indicates that the model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling. We compare our mode/with the mode/ introduced by Stefano Lise and Maya Paczuski [Phys. Rev. Lett. 88 (2002) 228301], it is proved that they are not in the same universality class.展开更多
We consider the earthquake model on a random graph. A detailed analysis of the probability distribution of the size of the avalanches will be given. The model with different inhomogeneities is studied in order to comp...We consider the earthquake model on a random graph. A detailed analysis of the probability distribution of the size of the avalanches will be given. The model with different inhomogeneities is studied in order to compare the critical behavior of different systems. The results indicate that with the increase of the inhomogeneities, the avalanche exponents reduce, i.e., the different numbers of defects cause different critical behaviors of the system. This is virtually ascribed to the dynamical perturbation.展开更多
On the assumption that a plate is elastically deformable and may rotate as a whole, we found that Eurasian area may be divided into an Eurasian plate and three blocks of the Xiyu, the North China and the Southeast Asi...On the assumption that a plate is elastically deformable and may rotate as a whole, we found that Eurasian area may be divided into an Eurasian plate and three blocks of the Xiyu, the North China and the Southeast Asia according to tectonic frame of the East and Southeast Asia and the ITRF2008 velocity field in Eurasian area. F tests show that the accuracy of this elastic-plate/block model is significantly higher than the corresponding rigid-plate models; the area covered is notably larger also.展开更多
文摘Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood routing.While their use may guarantee a significant reduction of the computational effort,it is mandatory to define the conditions in which they may be confidently applied.The present paper investigates the applicability conditions of the kinematic,diffusion and quasisteady dynamic shallow wave models for mud flows of power-law fluids.The power-law model describes in an adequate and convenient way fluids that at low shear rates fluids do not posses yield stress,such as clay or kaolin suspensions,which are frequently encountered in Chinese rivers.In the framework of a linear analysis,the propagation characteristics of a periodic perturbation of an initial steady uniform flow predicted by the simplified models are compared with those of the full dynamic one.Based on this comparison,applicability criteria for the different wave approximations for mud flood of power-law fluids are derived.The presented results provide guidelines for selecting the appropriate approximation for a given flow problem,and therefore they may represent a useful tool for engineering predictions.
文摘-A nonlinear model for the stress-strain behaviour of normally consolidated clays is presented based on the experimental results. It is indicated that the volume strain under pure shear is a power function of stress ratio and the normalized stress-strain curve is a standard hyperbola. According to the model, the coefficient of pore pressure induced by shear stress and the critical stress ratio which governs the influence of the negative dilatancy are suggested. It is shown by some triaxial tests that the proposed model can be used to study the negative dilatancy and to describe the stress-strain-pore pressure adequately for soft clays.
文摘A general shape of tensile stress-strain curves of woven fabrics is first recognised by puttingtested and predicted results together.An exponential function with two parameters is then selectedfor the prediction of tensile stress-strain relationship.The predicted results by using the proposedfunction show excellent agreement with experimental data.
基金The authors wish to express their gratitude to the National Natural Science Foundation of China(Nos.51208262,51778300)Key Research and Development Project of Jiangsu Province(No.BE2020703)+2 种基金Natural Science Foundation of Jiangsu Province(No.BK20191390)Six Talent Peaks Project of Jiangsu Province(JZ-017)Qinglan Project of Jiangsu Province for financially supporting this study.
文摘The destruction of recombinant bamboo depends on many factors,and the complex ambient temperature is an important factor affecting its basic mechanical properties.To investigate the failure mechanism and stress–strain relationship of recombinant bamboo at different temperatures,eighteen tensile specimens of recombinant bamboo were tested.The results showed that with increasing ambient temperature,the typical failure modes of recombinant bamboo were flush fracture,toothed failure,and serrated failure.The ultimate tensile strength,ultimate strain and elastic modulus of recombinant bamboo decreased with increasing temperature,and the ultimate tensile stress decreased from 154.07 to 96.55 MPa,a decrease of 37.33%,and the ultimate strain decreased from 0.011 to 0.008,a decrease of 26.57%.Based on the Ramberg-Osgood model and the pseudo‒elastic design method,a predictive model was established for the tensile stress–strain relationship of recombinant bamboo considering the temperature level.The model can accurately evaluate the tensile stress–strain relationship of recombinant bamboo under different temperature conditions.
基金supported by the National Natural Science Foundation of China(51878354)the Natural Science Foundation of Jiang-su Province(No.BK20181402)+1 种基金Six Peak High-level Talents Project of Jiangsu Provincea Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘In order to investigate the basic mechanical properties and stress strain relationship model for bamboo scrimber manufactured based on a new technique,a large quantities of experiments have been carried out.Based on the analysis of the test results,the following conclusions can be drawn.Two main typical failure modes were classified for bamboo scrimber specimens both under tension parallel to grain and tension perpendicular to grain.Brittle failure happened for all tensile tests.The slope values for the elastic stages have bigger discreteness compared with those for the specimens under tensile parallel to grain.The failure modes for bamboo scrimber specimens under compression parallel to grain could be divided into four.Only one main failure mode happened both for the bending specimens and the shear specimens.With the COV values of 28.64 and 25.72 respectively,the values for the strength and elastic modulus under tensile perpendicular to grain have the largest discreteness for bamboo scrimber.From the point of CHV values,the relationship among the mechanical parameters for bamboo scrimber were proposed based on the test results.Compared with other green building materials,bamboo scrimber manufactured based on a new technique has better mechanical performance and could be used in construction area.Three stress strain relationship models which are four-linear model,quadratic function model,and cubic function model were proposed for bamboo scrimber specimens manufactured based on a new technique.The latter two models gives better prediction for stress strain relationship in elastic plastic stage.
文摘The paper presents a detailed analysis of experimental data in order to characterize the elastic properties of arteries.Such analysis would provide a good basis for evaluation of biomimetic vascular grafts.Since the latter needs to exhibit similar properties of native tissue,it is important to accurately characterize the biomimetic sample in a large range of applied stresses. The stress-strain properties vary according to the specific pathology(e.g.arteriosclerosis,aneurism)and the tissue graft must be chosen correctly.Two models are proposed in this paper on the stress-strain characteristics.An extension for frequency-domain analysis is provided for one of the models.The comparison between vascular grafts and native tissue for carotid and thoracic arteries in pigs are in good agreement with results from literature.The proposed experimental method offers suitable parameters for identifying models which characterize both elasticity and stiffness properties of the analyzed tissues(stress-strain).The proposed models show good performance in characterizing the intrinsic material properties.
基金Supported by the Fund of Hunan Provincial Construction Department(No.06-468-8)
文摘The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results indicate that the peak stress, peak strain, secant modulus of the peak point and original point increase with the strength grade of RAC enhanced. On the contrary, the residual stress of RAC decreases with the strength grade enhancing, and the failure of RAC is often broken at the interface between the recycled aggregate and the mortar matrix. Finally, the constitutive model of stress-strain model of RAC has been constituted, and the results from the constitutive model of stress-strain meet the experiment results very well.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71071098,91024026,and 71171136)supported by the Shanghai Rising-Star Program,China(Grant No.11QA1404500)the Leading Academic Discipline Project of Shanghai City,China(Grant No.XTKX2012)
文摘Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is 7 = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypemetwork model shares the scale-flee and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems.
文摘A one-dimensional sand-pile model (Manna model), which has a stochastic redistribution process, is studied both in discrete and continuous manners. The system evolves into a critical state after a transient period. A detailed analysis of the probability distribution of the avalanche size and duration is numerically investigated. Interestingly,contrary to the deterministic one-dimensional sand-pile model, where multifractal analysis works well, the analysis based on simple finite-size scaling is suited to fitting the data on the distribution of the avalanche size and duration. The exponents characterizing these probability distributions are measured. Scaling relations of these scaling exponents and their universality class are discussed.
基金The research work presented in this paper is supported by the Foreign Young TalentsProject China(No.QN2021014006L)National Natural Science Foundation of China(Nos.51878354&51308301)+1 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20181402&BK20130978)333 Talent High-Level Projects of Jiangsu Province and Qinglan Project of Jiangsu Higher EducationInstitutions.
文摘The use of fibre-reinforced polymer(FRP)to confine concrete columns improves the strength and ductility of the columns by reducing passive lateral confinement pressure.Many numerical and analytical formulations have been proposed in the literature to describe the compressive behaviour of FRP confined concrete under both monotonic and cyclic loads.However,the efect of a stress/strain level in the columns has not been well defined because of the lack of well-defined strategies of modeing and oversimplification of the model.This paper reviews the existing FRP combinations and the available numerical and analytical methods to determine the effectiveness of the adopted method.An effort has been made to examine the usage of FRP materials in column applications in exist-ing building regimes and highlights the possible future scopes to improve the use of FRP confined concrete in civil applications.
基金Funded by the National Basic Research Program of Chinathe National Natural Science Foundation of China(51675266)+3 种基金the Aeronautical Science Foundation of China(2014ZB52024)the Fundamental Research Funds for the Central Universities(NJ20160038)the Jiangsu Innovation Program for Graduate Education(CXLX13_165)the Fundamental Research Funds for the Central Universities
文摘The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008AA04Z407)
文摘The transition between the elastic and plastic states is sharp in the classical plasticity theory. To overcome this problem, many constitutive models, such as multi-yield-surface model and two-surface model, have been developed. However, these models can not represent the true deformation process in a material. In order to capture nonlinear hardening behavior and smooth transition from elastic to plastic state, a general model of fuzzy plasticity is developed. On the basis of the theory of fuzzy sets and TAKAGI-SUGENO fuzzy model, a fuzzy plastic model for monotonic and cyclic loadings in one dimension is established and it is generalized to six dimensions and unsymmetric cycles. The proposed model uses a set of surfaces to partition the stress space with individual plastic modulus. The plastic modulus between two adjacent surfaces is determined by a membership function. By means of a finite number of partitioning surfaces, the fuzzy plastic model can provide with a more realistic and practical description of the materials behavior than the classical plasticity model. The validity of the fuzzy plastic model is investigated by comparing the predicted and experimental stress-strain responses of steels. It was found that the fuzzy plasticity has the ability to handle many practical problems that cannot be adequately analyzed by the conventional theory of plasticity.
基金The project supported by the Association of International Education of Japan
文摘The paper describes an energy-based constitutive model for sand, which is modified based on the modified plastic strain energy approach, represented by a unique relationship between the modified plastic strain energy and a stress parameter, independent of stress history. The modified plastic strain energy approach was developed based on results from a series of drained plastic strain compression tests along various stress paths on saturated dense Toyoura sand with accurate stress and strain measurements. The proposed model is coupled with an isotropically work-hardening and softening, non-associtated, elasto-plastic material description. The constitutive model concerns the inherent and stress system-induced cross-anisotropic elastic deformation properties of sand. It is capable of simulating the deformation characteristics of stress history and stress path, the effects of pressure level, anisotropic strength and void ratio, and the strain localization.
基金Project supported by the National Natural Science Foundation of China (Grant No.60772124)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Outstanding Young Teachers in University Foundation of Shanghai (Grant No.B37010708003)
文摘This paper presents a rheology-based approach to animate realistic face model. The dynamic and biorheological characteristics of the force member (muscles) and stressed member (face) are considered. The stressed face can be modeled as viscoelastic bodies with the Hooke bodies and Newton bodies connected in a composite series-parallel manner. Then, the stress-strain relationship is derived, and the constitutive equations established. Using these constitutive equations, the face model can be animated with the force generated by muscles. Experimental results show that this method can realistically simulate the mechanical properties and motion characteristics of human face, and performance of this method is satisfactory.
基金National Natural Science Foundation of China under Grant No.10675060the Doctoral Foundation of the Ministry of Education of China under Grant No.2002055009
文摘We introduce a modified small-world network adding new links with nonlinearly preferential connectioninstead of adding randomly,then we apply Bak-Sneppen(BS)evolution model on this network.We study severalimportant structural properties of our network such as the distribution of link-degree,the maximum link-degree,and thegth of the shortest path.We further argue several dynamical characteristics of the model such as the important criticalvalue f_c,the f_0 avalanche,and the mutating condition,and find that those characteristics show panticular behaviors.
基金granted by Frontier Materials and Micro/Nano Science and Technology Center,National Cheng Kung University,Taiwan,R.O.C
文摘The nanoindentations were applied to island-shaped regions with metal-induced Si crystallizations. The experimental stress-strain relationship is obtained from the load-depth profile in order to investigate the critical stresses arising at various phase transitions. The stress and strain values at various indentation depths are applied to determine the Gibbs free energy at various phases. The intersections of the Gibbs free energy lines are used to determine the possible paths of phase transitions arising at various indentation depths. All the critical contact stresses corresponding to the various phase transitions at four annealing temperatures were found to be consistent with the experimental results.
文摘A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconservative: the result indicates that the model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling. We compare our mode/with the mode/ introduced by Stefano Lise and Maya Paczuski [Phys. Rev. Lett. 88 (2002) 228301], it is proved that they are not in the same universality class.
基金The project supported by National Natural Science Foundation of China under Grant No. 50272022
文摘We consider the earthquake model on a random graph. A detailed analysis of the probability distribution of the size of the avalanches will be given. The model with different inhomogeneities is studied in order to compare the critical behavior of different systems. The results indicate that with the increase of the inhomogeneities, the avalanche exponents reduce, i.e., the different numbers of defects cause different critical behaviors of the system. This is virtually ascribed to the dynamical perturbation.
基金supported by the China National Key Basic Research Program (2007CB411702)the National Natural Science Fundation of China(40474036,40474039)+1 种基金Earthquake Industry Research Special MajorProjects China Comprehensive Geophysical Fied Observation( 200908029)the Old Expert Research Foundation of China Earth-quake Administration
文摘On the assumption that a plate is elastically deformable and may rotate as a whole, we found that Eurasian area may be divided into an Eurasian plate and three blocks of the Xiyu, the North China and the Southeast Asia according to tectonic frame of the East and Southeast Asia and the ITRF2008 velocity field in Eurasian area. F tests show that the accuracy of this elastic-plate/block model is significantly higher than the corresponding rigid-plate models; the area covered is notably larger also.