There was a bi-directional promoter between gene 38 kd phosphorylated protein (pp38) gene; 1.8-kb mRNA transcript gene family in the genome of Marek's disease virus (MDV). In this study, enhanced green fluorescenc...There was a bi-directional promoter between gene 38 kd phosphorylated protein (pp38) gene; 1.8-kb mRNA transcript gene family in the genome of Marek's disease virus (MDV). In this study, enhanced green fluorescence protein (EGFP) reporter plamids, pP(pp38)-EGFP; pP(1.8-kb)-EGFP, were constructed under this bi-directional promoter in two directions. The two plasmids were transfected into uninfected chicken embryo fibroblast (CEF), MDV clone rMd5 infected CEF (rMd5-CEF); pp38-deleted derivative rMd5Δpp38 infected CEF (rMd5Δpp38-CEF) respectively. Transfection analysis showed that EGFP was only expressed in rMd5-CEF,; no EGFP could be detected in uninfected CEF or rMd5Δpp38-CEF, implying that pp38 was a factor influencing the activity of the promoter. The pp38-expressing recombinant plasmid pcDNA-pp38 was constructed to co-transfect CEF or rMd5Δpp38-CEF with pP(pp38)-EGFP or pP(1.8-kb)-EGFP. In this case, EGFP could be detected only in rMd5Δpp38-CEF but still not in uninfected CEF, implying that pp38 needs other protein(s) to work together for the complete trans-acting activity. Another MDV gene, 24 kd phosphorylated protein pp24 gene was cloned into pcDNA3.1 as a pp24-expressing recombinant plasmid pcDNA-pp24. When uninfected CEF was co-transfected with pcDNA-pp38, pcDNA-pp24; EGFP expressing plasmids pP(pp38)-EGFP or pP(1.8-kb)-EGFP, the EGFP could be detected. These results indicated that pp38; pp24 could enhance the activity of the promoter when they worked together. DNA mobility shift assay showed that pp38 would bind to the bi-directional promoter with the co-existing of pp24, although neither of them alone influenced mobility of the promoter DNA. All the above suggested that MDV pp38 could transactivate the bi-directional promoter when combined with pp24. The results also indicated that the activity of the promoter in the direction of 1.8-kb mRNA was significantly stronger than that of pp38 direction.展开更多
DNA sequencing analysis in 38 kd phosphorylated protein (pp38) ORF of Marek's disease viruses (MDV) indicated that all tested 10 virulent strains with different pathotypes had 'A' at base #320 and glutamin...DNA sequencing analysis in 38 kd phosphorylated protein (pp38) ORF of Marek's disease viruses (MDV) indicated that all tested 10 virulent strains with different pathotypes had 'A' at base #320 and glutamine at aa#107 while reacted with monoclonal antibody (Mab) H19 in indirect fluorescence antibody test (IFA). However, vaccine strain CVI988 had 'G' at base#320 and arginine at aa#107 instead, when it was negative in IFA with Mab H19. Some strains were also reactive with Mab T65 in IFA while there was 'G' at base #326 and glycine at aa#109, but the other strains, which had 'A' at base #326 and glutamic acid at aa#109, did not react with Mab T65. By comparison of CVI988 to its point mutants CVI/rpp38(AG) and CVI/rpp38(AA) with 1 or 2 base(s) changes at bases #320 and /or #326 of pp38 gene for their reactivity with Mab H19 and T65, it was confirmed that the glutamine at aa#107 and glycine at aa#109 were critical to epitopes H19 and T65 respectively. Immuno-reactions to MDV were compared in SPF chickens inoculated with cloned CVI988 and its mutant CVI/rpp38(AG). It was found that antibody responses to MDV in chickens inoculated with CVI/rpp38(AG) were delayed and significantly lower than that in chickens inoculated with the native CVI988. By differential comparison of antibody titers to different antigens, a third epitope specific to CVI988 and dependent on arginine at aa#107 was suggested to be responsible for the big difference in antibody responses induced by native CVI988 and its mutant.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.30300450&30070544).
文摘There was a bi-directional promoter between gene 38 kd phosphorylated protein (pp38) gene; 1.8-kb mRNA transcript gene family in the genome of Marek's disease virus (MDV). In this study, enhanced green fluorescence protein (EGFP) reporter plamids, pP(pp38)-EGFP; pP(1.8-kb)-EGFP, were constructed under this bi-directional promoter in two directions. The two plasmids were transfected into uninfected chicken embryo fibroblast (CEF), MDV clone rMd5 infected CEF (rMd5-CEF); pp38-deleted derivative rMd5Δpp38 infected CEF (rMd5Δpp38-CEF) respectively. Transfection analysis showed that EGFP was only expressed in rMd5-CEF,; no EGFP could be detected in uninfected CEF or rMd5Δpp38-CEF, implying that pp38 was a factor influencing the activity of the promoter. The pp38-expressing recombinant plasmid pcDNA-pp38 was constructed to co-transfect CEF or rMd5Δpp38-CEF with pP(pp38)-EGFP or pP(1.8-kb)-EGFP. In this case, EGFP could be detected only in rMd5Δpp38-CEF but still not in uninfected CEF, implying that pp38 needs other protein(s) to work together for the complete trans-acting activity. Another MDV gene, 24 kd phosphorylated protein pp24 gene was cloned into pcDNA3.1 as a pp24-expressing recombinant plasmid pcDNA-pp24. When uninfected CEF was co-transfected with pcDNA-pp38, pcDNA-pp24; EGFP expressing plasmids pP(pp38)-EGFP or pP(1.8-kb)-EGFP, the EGFP could be detected. These results indicated that pp38; pp24 could enhance the activity of the promoter when they worked together. DNA mobility shift assay showed that pp38 would bind to the bi-directional promoter with the co-existing of pp24, although neither of them alone influenced mobility of the promoter DNA. All the above suggested that MDV pp38 could transactivate the bi-directional promoter when combined with pp24. The results also indicated that the activity of the promoter in the direction of 1.8-kb mRNA was significantly stronger than that of pp38 direction.
基金supported by the National Natural Science Foundation of China(Grant No.30070544).
文摘DNA sequencing analysis in 38 kd phosphorylated protein (pp38) ORF of Marek's disease viruses (MDV) indicated that all tested 10 virulent strains with different pathotypes had 'A' at base #320 and glutamine at aa#107 while reacted with monoclonal antibody (Mab) H19 in indirect fluorescence antibody test (IFA). However, vaccine strain CVI988 had 'G' at base#320 and arginine at aa#107 instead, when it was negative in IFA with Mab H19. Some strains were also reactive with Mab T65 in IFA while there was 'G' at base #326 and glycine at aa#109, but the other strains, which had 'A' at base #326 and glutamic acid at aa#109, did not react with Mab T65. By comparison of CVI988 to its point mutants CVI/rpp38(AG) and CVI/rpp38(AA) with 1 or 2 base(s) changes at bases #320 and /or #326 of pp38 gene for their reactivity with Mab H19 and T65, it was confirmed that the glutamine at aa#107 and glycine at aa#109 were critical to epitopes H19 and T65 respectively. Immuno-reactions to MDV were compared in SPF chickens inoculated with cloned CVI988 and its mutant CVI/rpp38(AG). It was found that antibody responses to MDV in chickens inoculated with CVI/rpp38(AG) were delayed and significantly lower than that in chickens inoculated with the native CVI988. By differential comparison of antibody titers to different antigens, a third epitope specific to CVI988 and dependent on arginine at aa#107 was suggested to be responsible for the big difference in antibody responses induced by native CVI988 and its mutant.