Haug has recently introduced a new theory of unified quantum gravity coined “<em>Collision Space-Time</em>”. From this new and deeper understanding of mass, we can also understand how a grandfather pendu...Haug has recently introduced a new theory of unified quantum gravity coined “<em>Collision Space-Time</em>”. From this new and deeper understanding of mass, we can also understand how a grandfather pendulum clock can be used to measure the world’s shortest time interval, namely the Planck time, indirectly, without any knowledge of G. Therefore, such a clock can also be used to measure the diameter of an indivisible particle indirectly. Further, such a clock can easily measure the Schwarzschild radius of the gravity object and what we will call “Schwarzschild time”. These facts basically prove that the Newton gravitational constant is not needed to find the Planck length or the Planck time;it is also not needed to find the Schwarzschild radius. Unfortunately, there is significant inertia towards new ideas that could significantly alter our perspective on the fundamentals in the current physics establishment. However, this situation is not new in the history of science. Still, the idea that the Planck time can be measured totally independently of any knowledge of Newton’s gravitational constant could be very important for moving forward in physics. Interestingly, an old instrument that today is often thought of as primitive instrument can measure the world’s shortest possible time interval. No atomic clock or optical clock is even close to be able to do this.展开更多
As an extension of the"teleparallel"equivalent of general relativity,f(T)gravity is proposed to explain some puzzling cosmological behaviors,such as accelerating expansion of the Universe.Given the fact that modif...As an extension of the"teleparallel"equivalent of general relativity,f(T)gravity is proposed to explain some puzzling cosmological behaviors,such as accelerating expansion of the Universe.Given the fact that modified gravity also has impacts on the Solar System,we might test it during future interplanetary missions with ultrastable clocks.In this work,we investigate the effects of f(T)gravity on the dynamics of the clock and its time transfer link.Under these influences,theΛ-term and theα-term of f(T)gravity play important roles.Here,Λis the cosmological constant andαrepresents a model parameter in f(T)gravity that determines the divergence from teleparallel gravity at the first order approximation.We find that the signal of f(T)gravity in the time transfer is much more difficult to detect with the current state of development for clocks than those effects on dynamics of an interplanetary spacecraft with a bounded orbit with parameters 0.5 au≤a≤5.5 au and 0≤e≤0.1.展开更多
Einstein relativity theory shows its high capability of promoting itself to solve the long stand physical problems. The so-called generalized special relativity (GSR) was derived later, using the beautiful Einstein re...Einstein relativity theory shows its high capability of promoting itself to solve the long stand physical problems. The so-called generalized special relativity (GSR) was derived later, using the beautiful Einstein relation between field and space-time curvature. In this work we re-derive (GSR) expression of time by incorporating the field effect in it, and by using mirror clock and Lorentz transformations. This expression reduces to that of (GSR) the previous conventional one, besides reducing to special relativistic expression. It also shows that the speed of light is constant inside the field and is equal to C. This means that the observed decrease of light in matter and field is attributed to the strong interaction of photons with particles and mediates which causes successive absorption and reemission processes that lead to time delay. This absorption process makes some particles appear to move faster than light within the field or medium. This new expression, unlike that of GSR, can describe time and coordinate relativistic expressions for strong as well as weak fields at constant acceleration.展开更多
The twins or clock paradox has been a subject of lively discussion and occasional disagreement among both relativists and the public for over 100 years, and continues to attract physicists who write papers giving new ...The twins or clock paradox has been a subject of lively discussion and occasional disagreement among both relativists and the public for over 100 years, and continues to attract physicists who write papers giving new analyses or defending old ones, even though many physicists now consider the matter only of educational interest. This paper investigates the number of papers, which is increasing, and trends in explanations, some of which are now targeted at professional physicists and other of which are targeted at optical or radar visualization rather than problem solving. Observations of students indicate that the latest techniques help but only somewhat. An analysis is made of 21 previous treatments appearing in the education related American Journal of Physics, Einstein’s discussions and several other pedagogical papers. A new memory aid for simultaneity transformation is given that puts it on a par with “time dilation” and “length contraction” for quick and easy problem visualization. The point of view of a trailing twin is introduced to show how simultaneity changes account for missing time in the turnaround. Length contraction is treated on equal footing with time dilation, and Swann’s insight into clocks is extended to lengths. Treatments using the conventionality of simultaneity are seen as equivalent to choice of co-moving frames. Responses to difficult questions are suggested which avoid being dismissive, and engage students’ critical thinking.展开更多
A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble...A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.展开更多
A time and frequency system is a critical component of Very Long Baseline Interferometry(VLBI)stations,providing stable and reliable standards that directly impact data processing quality.At the Tianma 65 m radio tele...A time and frequency system is a critical component of Very Long Baseline Interferometry(VLBI)stations,providing stable and reliable standards that directly impact data processing quality.At the Tianma 65 m radio telescope(TMRT),this system has been meticulously designed to ensure long-term reliability and high performance.It incorporates high-performance hydrogen atomic clocks,high-precision time standards,automatic signal switching,and robust system software.This comprehensive approach has enabled the system to achieve long-term reliable operation,successfully supporting both major national engineering tasks and daily scientific observations.The effectiveness of the system is evidenced by its consistent delivery of the precision and stability required for radio astronomy.This article provides an in-depth exploration of the design and operation of the time and frequency system at the Tianma 65 m telescope,examining various aspects of its architecture,implementation,and performance.By sharing these insights,we aim to contribute knowledge that could benefit similar systems at other VLBI stations,greatly advancing radio astronomy infrastructure.展开更多
Based on the minimum settling time (MST) theory and step-response analysis of the second order system in active switched capacitor (SC) networks, a novel clock feedthrough frequency compensation (CFFC) method fo...Based on the minimum settling time (MST) theory and step-response analysis of the second order system in active switched capacitor (SC) networks, a novel clock feedthrough frequency compensation (CFFC) method for a folded-cascode OTA is proposed. The damping factor r/is adjusted by using MOS capacitors to introduce clock feedthrough so that the OTA can obtain the MST state and thus achieve fast settling. Research results indicate that the settling time of the compensated OTA is reduced by 22.7% ;as the capacitor load varies from 0.5 to 2.5pF,the improved settling time increases approximately linearly from 3.62 to 4.46ns: for VGA application, fast settling can also be achieved by modifying the MOS capacitor value accordingly when the closed loop gain of the compensated OTA varies.展开更多
The data acquisition stations and the data processing center of the Science and Application Center for Lunar and Deep-space Exploration (SACLuDE) are located at different geographical sites. They respectively have the...The data acquisition stations and the data processing center of the Science and Application Center for Lunar and Deep-space Exploration (SACLuDE) are located at different geographical sites. They respectively have their own local networks and interconnect with each other through access to the core data network. This paper describes the clock drift in the computer and other networked devices building up the infrastructure of the above local networks. The network time variance of the stochastic model is also estimated. The poor precision of network synchronization will bring about potential hazards to the network operation and application running in the networks, which is clarified in the present paper. At the end of the paper, a cost-effective and feasible solution is proposed based on the Global Position System (GPS) and the Network Time Protocol (NTP).展开更多
20th century physics experimentally established beyond doubt the fact that moving clocks read differently from “static” clocks. This fact is typically interpreted as support for special relativity. On the other hand...20th century physics experimentally established beyond doubt the fact that moving clocks read differently from “static” clocks. This fact is typically interpreted as support for special relativity. On the other hand, the same century produced proof that clocks at various locations in the gravitational field also read differently, and this fact is explained by general relativity, which is, in general, not Lorentz transformable. This paper establishes a common framework for the physics of clocks in these different situations.展开更多
An ultra-narrow spectroscopy of clock transition with high signal-to-noise ratio is crucial for a high-performance atomic optical clock. We present a detailed study about how to obtain a Hertz-level clock transition s...An ultra-narrow spectroscopy of clock transition with high signal-to-noise ratio is crucial for a high-performance atomic optical clock. We present a detailed study about how to obtain a Hertz-level clock transition spectrum of 171 Yb atoms. About 4 × 10^4 atoms are loaded into a one-dimensional optical lattice with a magic wavelength of 759 nm, and a long lifetime of 3 s is realized with the lattice power of I W. Through normalized shelving detection and spin polarization, 171 Yb clock spectroscopy with a fourier-limited linewidth of 5.9 Hz is obtained. Our work represents a key step toward an ytterbium optical clock with high frequency stability.展开更多
The optical Ramsey spectrum is experimentally realized in an ^(87)Sr optical lattice clock, and the measured linewidth agrees well with theoretical expectation. The coherence time between the clock laser and the atoms...The optical Ramsey spectrum is experimentally realized in an ^(87)Sr optical lattice clock, and the measured linewidth agrees well with theoretical expectation. The coherence time between the clock laser and the atoms, which indicates the maximum free evolution period of using Ramsey detection to measure the atom-laser phase information, is determined as 340(23) ms by measuring the fringe contrasts of the Ramsey spectrum as a function of the free evolution period. Furthermore, with the same clock duty cycle of about 0.1, the clock stability is measured by using the Ramsey and Rabi spectra,respectively. The experimental and theoretical results show approximately the same stability as the two detection methods, which indicates that Ramsey detection cannot obviously improve the clock stability until the clock duty cycle is large enough. Thus, it is of great significance to choose the detection method of a specific clock.展开更多
In this paper, the design of a coarse-fine interpolation Time-to-Digital Converter (TDC) is implemented in an ALTERA’s Cyclone FPGA. The carry-select chain performs as the tapped delay line. The Logic Array Block (LA...In this paper, the design of a coarse-fine interpolation Time-to-Digital Converter (TDC) is implemented in an ALTERA’s Cyclone FPGA. The carry-select chain performs as the tapped delay line. The Logic Array Block (LAB) having a propagation delay of 165 ps in the chain is synthesized as delay cell. Coarse counters triggered by the global clock count the more significant bits of the time data. This clock is also fed through the delay line, and LABs create the copies. The replicas are latched by the tested event signal, and the less significant bits are encoded from the latched binary bits. Single-shot resolution of the TDC can be 60 ps. The worst Differential Nonlinearity (DNL) is about 0.2 Least Significant Bit (LSB, 165 ps in this TDC module), and the Integral Nonlinearity (INL) is 0.6 LSB. In comparison with other architectures using the synchronous global clock to sample the taps, this architecture consumed less electric power and logic cells, and is more stable.展开更多
The NIM4 cesium fountain clock has been operating stably and sub-continually since Aug. 2003. In this paper we present improvements on NIM4 in 2005-2006 and the most recent evaluation for its frequency shifts with an ...The NIM4 cesium fountain clock has been operating stably and sub-continually since Aug. 2003. In this paper we present improvements on NIM4 in 2005-2006 and the most recent evaluation for its frequency shifts with an uncertainty of 5E-15. A 220 days comparison between NIM4 and GPS showed an agreement of 2E-14. Finally the construction of a NIM5 transportable cesium fountain clock is briefly reported.展开更多
文摘Haug has recently introduced a new theory of unified quantum gravity coined “<em>Collision Space-Time</em>”. From this new and deeper understanding of mass, we can also understand how a grandfather pendulum clock can be used to measure the world’s shortest time interval, namely the Planck time, indirectly, without any knowledge of G. Therefore, such a clock can also be used to measure the diameter of an indivisible particle indirectly. Further, such a clock can easily measure the Schwarzschild radius of the gravity object and what we will call “Schwarzschild time”. These facts basically prove that the Newton gravitational constant is not needed to find the Planck length or the Planck time;it is also not needed to find the Schwarzschild radius. Unfortunately, there is significant inertia towards new ideas that could significantly alter our perspective on the fundamentals in the current physics establishment. However, this situation is not new in the history of science. Still, the idea that the Planck time can be measured totally independently of any knowledge of Newton’s gravitational constant could be very important for moving forward in physics. Interestingly, an old instrument that today is often thought of as primitive instrument can measure the world’s shortest possible time interval. No atomic clock or optical clock is even close to be able to do this.
基金Supported by the National Natural Science Foundation of China (Grant No. 11103010)funded by the Natural Science Foundation of China (Grant No. 11103085)+3 种基金the Fundamental Research Program of Jiangsu Province of China (Grant No. BK20131461Grant No. BK2011553)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110091120003)the Fundamental Research Funds for the Central Universities (No. 1107020116)
文摘As an extension of the"teleparallel"equivalent of general relativity,f(T)gravity is proposed to explain some puzzling cosmological behaviors,such as accelerating expansion of the Universe.Given the fact that modified gravity also has impacts on the Solar System,we might test it during future interplanetary missions with ultrastable clocks.In this work,we investigate the effects of f(T)gravity on the dynamics of the clock and its time transfer link.Under these influences,theΛ-term and theα-term of f(T)gravity play important roles.Here,Λis the cosmological constant andαrepresents a model parameter in f(T)gravity that determines the divergence from teleparallel gravity at the first order approximation.We find that the signal of f(T)gravity in the time transfer is much more difficult to detect with the current state of development for clocks than those effects on dynamics of an interplanetary spacecraft with a bounded orbit with parameters 0.5 au≤a≤5.5 au and 0≤e≤0.1.
文摘Einstein relativity theory shows its high capability of promoting itself to solve the long stand physical problems. The so-called generalized special relativity (GSR) was derived later, using the beautiful Einstein relation between field and space-time curvature. In this work we re-derive (GSR) expression of time by incorporating the field effect in it, and by using mirror clock and Lorentz transformations. This expression reduces to that of (GSR) the previous conventional one, besides reducing to special relativistic expression. It also shows that the speed of light is constant inside the field and is equal to C. This means that the observed decrease of light in matter and field is attributed to the strong interaction of photons with particles and mediates which causes successive absorption and reemission processes that lead to time delay. This absorption process makes some particles appear to move faster than light within the field or medium. This new expression, unlike that of GSR, can describe time and coordinate relativistic expressions for strong as well as weak fields at constant acceleration.
文摘The twins or clock paradox has been a subject of lively discussion and occasional disagreement among both relativists and the public for over 100 years, and continues to attract physicists who write papers giving new analyses or defending old ones, even though many physicists now consider the matter only of educational interest. This paper investigates the number of papers, which is increasing, and trends in explanations, some of which are now targeted at professional physicists and other of which are targeted at optical or radar visualization rather than problem solving. Observations of students indicate that the latest techniques help but only somewhat. An analysis is made of 21 previous treatments appearing in the education related American Journal of Physics, Einstein’s discussions and several other pedagogical papers. A new memory aid for simultaneity transformation is given that puts it on a par with “time dilation” and “length contraction” for quick and easy problem visualization. The point of view of a trailing twin is introduced to show how simultaneity changes account for missing time in the turnaround. Length contraction is treated on equal footing with time dilation, and Swann’s insight into clocks is extended to lengths. Treatments using the conventionality of simultaneity are seen as equivalent to choice of co-moving frames. Responses to difficult questions are suggested which avoid being dismissive, and engage students’ critical thinking.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFB3900701)the Science and Technology Plan Project of the State Administration for Market Regulation of China (Grant No.2023MK178)the National Natural Science Foundation of China (Grant No.42227802)。
文摘A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.
基金supported by the National Natural Sci-ence Foundation of China(12273098).
文摘A time and frequency system is a critical component of Very Long Baseline Interferometry(VLBI)stations,providing stable and reliable standards that directly impact data processing quality.At the Tianma 65 m radio telescope(TMRT),this system has been meticulously designed to ensure long-term reliability and high performance.It incorporates high-performance hydrogen atomic clocks,high-precision time standards,automatic signal switching,and robust system software.This comprehensive approach has enabled the system to achieve long-term reliable operation,successfully supporting both major national engineering tasks and daily scientific observations.The effectiveness of the system is evidenced by its consistent delivery of the precision and stability required for radio astronomy.This article provides an in-depth exploration of the design and operation of the time and frequency system at the Tianma 65 m telescope,examining various aspects of its architecture,implementation,and performance.By sharing these insights,we aim to contribute knowledge that could benefit similar systems at other VLBI stations,greatly advancing radio astronomy infrastructure.
文摘Based on the minimum settling time (MST) theory and step-response analysis of the second order system in active switched capacitor (SC) networks, a novel clock feedthrough frequency compensation (CFFC) method for a folded-cascode OTA is proposed. The damping factor r/is adjusted by using MOS capacitors to introduce clock feedthrough so that the OTA can obtain the MST state and thus achieve fast settling. Research results indicate that the settling time of the compensated OTA is reduced by 22.7% ;as the capacitor load varies from 0.5 to 2.5pF,the improved settling time increases approximately linearly from 3.62 to 4.46ns: for VGA application, fast settling can also be achieved by modifying the MOS capacitor value accordingly when the closed loop gain of the compensated OTA varies.
文摘The data acquisition stations and the data processing center of the Science and Application Center for Lunar and Deep-space Exploration (SACLuDE) are located at different geographical sites. They respectively have their own local networks and interconnect with each other through access to the core data network. This paper describes the clock drift in the computer and other networked devices building up the infrastructure of the above local networks. The network time variance of the stochastic model is also estimated. The poor precision of network synchronization will bring about potential hazards to the network operation and application running in the networks, which is clarified in the present paper. At the end of the paper, a cost-effective and feasible solution is proposed based on the Global Position System (GPS) and the Network Time Protocol (NTP).
文摘20th century physics experimentally established beyond doubt the fact that moving clocks read differently from “static” clocks. This fact is typically interpreted as support for special relativity. On the other hand, the same century produced proof that clocks at various locations in the gravitational field also read differently, and this fact is explained by general relativity, which is, in general, not Lorentz transformable. This paper establishes a common framework for the physics of clocks in these different situations.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61227805,91536104 and 11574352
文摘An ultra-narrow spectroscopy of clock transition with high signal-to-noise ratio is crucial for a high-performance atomic optical clock. We present a detailed study about how to obtain a Hertz-level clock transition spectrum of 171 Yb atoms. About 4 × 10^4 atoms are loaded into a one-dimensional optical lattice with a magic wavelength of 759 nm, and a long lifetime of 3 s is realized with the lattice power of I W. Through normalized shelving detection and spin polarization, 171 Yb clock spectroscopy with a fourier-limited linewidth of 5.9 Hz is obtained. Our work represents a key step toward an ytterbium optical clock with high frequency stability.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61775220)the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100)。
文摘The optical Ramsey spectrum is experimentally realized in an ^(87)Sr optical lattice clock, and the measured linewidth agrees well with theoretical expectation. The coherence time between the clock laser and the atoms, which indicates the maximum free evolution period of using Ramsey detection to measure the atom-laser phase information, is determined as 340(23) ms by measuring the fringe contrasts of the Ramsey spectrum as a function of the free evolution period. Furthermore, with the same clock duty cycle of about 0.1, the clock stability is measured by using the Ramsey and Rabi spectra,respectively. The experimental and theoretical results show approximately the same stability as the two detection methods, which indicates that Ramsey detection cannot obviously improve the clock stability until the clock duty cycle is large enough. Thus, it is of great significance to choose the detection method of a specific clock.
基金Supported by National Natural Science Foundation of China (No. 10405023)Knowledge Innovation Program of The Chinese Academy of Sciences (KJCX2-YW-N27)
文摘In this paper, the design of a coarse-fine interpolation Time-to-Digital Converter (TDC) is implemented in an ALTERA’s Cyclone FPGA. The carry-select chain performs as the tapped delay line. The Logic Array Block (LAB) having a propagation delay of 165 ps in the chain is synthesized as delay cell. Coarse counters triggered by the global clock count the more significant bits of the time data. This clock is also fed through the delay line, and LABs create the copies. The replicas are latched by the tested event signal, and the less significant bits are encoded from the latched binary bits. Single-shot resolution of the TDC can be 60 ps. The worst Differential Nonlinearity (DNL) is about 0.2 Least Significant Bit (LSB, 165 ps in this TDC module), and the Integral Nonlinearity (INL) is 0.6 LSB. In comparison with other architectures using the synchronous global clock to sample the taps, this architecture consumed less electric power and logic cells, and is more stable.
文摘The NIM4 cesium fountain clock has been operating stably and sub-continually since Aug. 2003. In this paper we present improvements on NIM4 in 2005-2006 and the most recent evaluation for its frequency shifts with an uncertainty of 5E-15. A 220 days comparison between NIM4 and GPS showed an agreement of 2E-14. Finally the construction of a NIM5 transportable cesium fountain clock is briefly reported.