Objective: To investigate the occurrence of PTSD in pre-hospital emergency nurses and its related factors, and to compare the differences of neurotransmitter and immune-related factors between pre-hospital emergency n...Objective: To investigate the occurrence of PTSD in pre-hospital emergency nurses and its related factors, and to compare the differences of neurotransmitter and immune-related factors between pre-hospital emergency nurses who experienced traumatic events and those who did not develop PTSD and healthy people. How: Post-traumatic Stress Disorder Self-Rating Scale (PCL-C) tests were performed on pre-hospital emergency nurses in PTSD group, non-PTSD group and healthy control group, and the plasma monoamine neurotransmitters and serum cytokines were determined by double-antibody sandwich ABC-ELISA assay using enzyme-linked adsorption kit provided by Shanghai Xitang Biotechnology Co., Ltd. Results: 1) There were statistically significant differences in PCL-C scores between PTSD group, non-PTSD group and healthy group (p α between PTSD group, non-PTSD group and healthy group (p Conclusion: Pre-hospital emergency nurses should have early psychological intervention and guidance to reduce the occurrence of PTSD in emergency and emergency nurses.展开更多
A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-de...A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-designed test setup.Experiments are conducted on the fishbone shaped specimen under conventional welding and welding with various pre-stress values.The experimental results turn out that,the initiation rate of the weld hot cracks decreases with increasing values of the compressive pre-stress.When the pre-stress reaches 0.3-0.4 of the yield stress,the cracks even disappear.In mechanical viewpoint,the researches here develop a new way to control weld cracks.展开更多
Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hy...Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hysteresis effect in this strengthening method, and pre-tensioning the FRP can overcome this problem. This paper presents test results of 25 circular RC columns strengthened with pre-stressed FRP strips under low cyclic loading. The pre-stressing of the FRP strips, types of FRP strips and longitudinal reinforcement, axial load ratio, pre-damage degree and surface treatments of the specimens are considered as the primary factors in the tests. According to the failure modes and hysteresis curves of the specimens, these factors are analyzed to investigate their effect on bearing capacity, ductility, hysteretic behavior, energy dissipation capacity and other important seismic behaviors. The results show that the initial lateral confined stress provided by pre-stressed FRP strips can effectively inhibit the emergence and development of diagonal shear cracks, and change the failure modes of specimens from brittle shear failure to bending or bending-shear failure with better ductility. As a result, the bearing capacity, ductility, energy dissipation capacity and deformation capacity of the strengthened specimens are all significantly improved.展开更多
Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performan...Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performance into full play, and to treat with landslide fast and economically. The difference between them is that the pre-stressed rope will transfix the whole anti- sliding pile through a prearranged pipe in this structure. The working mechanics, the design method and economic benefit are studied. The results show that the pre-stressed rope reinforced anti-sliding pile can treat with the small and middle landslides or high slopes well and possess the notable advantage of technology and economic.展开更多
Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be s...Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.展开更多
With a micro mechanical model, the feasibility of modification of thermal residual stress of the composites treated by tensile pre plastic deformation was analyzed. The relationship between pre plastic strain and vari...With a micro mechanical model, the feasibility of modification of thermal residual stress of the composites treated by tensile pre plastic deformation was analyzed. The relationship between pre plastic strain and variation of thermal residual stress was established. By using the method of tensile pre plastic deformation, the thermal residual stress in 20%SiC w/6061Al composites was modified. The results show that, with increasing tensile pre plastic strain, the tensile residual stress in the matrix was decreased to zero gradually, and then it was turned into compressive stress. By comparison, it was found that the changing tendency of the test results is similar to that of theoretical analysis. In addition, due to pre plastic deformation, the dislocation density in the matrix was increased, and the yield strength of the composites was improved. The increasing yield strength is mainly due to the decreasing tensile residual stress and the changing of distribution of dislocation in the matrix.展开更多
Based on the conventional uniaxial pre-tensile stress method during welding, this study presents a new method of welding with biaxial pre-stress. With the help of numerical simulation, experiments were carried out on ...Based on the conventional uniaxial pre-tensile stress method during welding, this study presents a new method of welding with biaxial pre-stress. With the help of numerical simulation, experiments were carried out on the self-designed device. Except for the control on residual stress and distortion us-welded, the experimental results also show its effect on the prevention of hot cracks, thus this method can make up for the disadvantage of the conventional pre-stress method. Hot cracks disappear when the value of pre-stress surpasses 0. 2 σs(yield limit). Welded thin plates with low-level residual stress, little distortion and no hot cracks are obtained with longitudinal pre-tensile stress level between 0. 6σsand 0. 7σs and precompressive stress between 0. 2 σs and 0. 3 σs in transverse direction.展开更多
An anchor bearing plate transfers the anchoring force from anchor plate to the concrete and the pre-stress is formed in the concrete structure. Currently, the main type of anchor bearing plate is cast iron. It is brit...An anchor bearing plate transfers the anchoring force from anchor plate to the concrete and the pre-stress is formed in the concrete structure. Currently, the main type of anchor bearing plate is cast iron. It is brittle during transportation and tension process. This paper presents a new type of anchor bearing plate combined stamping with welding forming. The structure of the new type anchor bearing plate is introduced. The stress states of the anchor bearing plate and anchorage zone under work are studied. Various specifications of anchor bearing plate are studied by ANSYS finite element analysis software following the AASHTO specification. The analysis results are compared with the results of the same type of OVM round-shaped anchor plate. The study results show that the new pre-stressed anchor plates combined stamping with welding forming are feasible and more sturdy which can meet the engineering demand.展开更多
Because posttraumatic stress disorder(PTSD) is a highly debilitating condition, prevention is an important research topic. This article reviews possible prevention approaches that involve the administration of drugs b...Because posttraumatic stress disorder(PTSD) is a highly debilitating condition, prevention is an important research topic. This article reviews possible prevention approaches that involve the administration of drugs before the traumatic event takes place. The considered approaches include drugs that address the sympathetic nervous system, drugs interfere with the hypothalamic-pituitary-adrenal(HPA) axis, narcotics and other psychoactive drugs, as well as modulators of protein synthesis. Furthermore, some thoughts on potential ethical implications of the use of drugs for the primary prevention of PTDS are presented. While there are many barriers to overcome in this field of study, this paper concludes with a call for additional research, as there are currently no approaches that are well-suited for regular daily use.展开更多
The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (S...The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (SSRT), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that the alloy is susceptible to SCC in 3.5% NaCI water solution and not in air. At the same pre-deformation, the alloy is more susceptible to SCC at 1.33 × 10^-5 s^-1 than at 6.66 × 10^-5 s^-1. Moreover, it is more susceptible to SCC at free pre-deformation than at 10% pre-deformation at the same strain rate. The number of 0 precipitated along the grain boundaries is reduced and distributed discontinuously, at the same time, the precipitate-free zones (PFZ) become narrow and the susceptibility to stress corrosion cracking is reduced after 10% pre-deformation.展开更多
High-κ /Ge gate stack has recently attracted a great deal of attention as a potential candidate to replace planar silicon transistors for sub-22 generation. However, the desorption and volatilization of GeO hamper th...High-κ /Ge gate stack has recently attracted a great deal of attention as a potential candidate to replace planar silicon transistors for sub-22 generation. However, the desorption and volatilization of GeO hamper the development of Ge-based devices. To cope with this challenge, various techniques have been proposed to improve the high-κ /Ge interface. However,these techniques have not been developed perfectly yet to control the interface. Therefore, in this paper, we propose an improved stress relieved pre-oxide(SRPO) method to improve the thermodynamic stability of the high-κ /Ge interface. The x-ray photoelectron spectroscopy(XPS) and atomic force microscopy(AFM) results indicate that the GeO volatilization of the high-κ /Ge gate stack is efficiently suppressed after 500℃ annealing, and the electrical characteristics are greatly improved.展开更多
This study focuses on the geometry and kinematics of the Sinnyeong Fault which is the most conspicuous fault among the WNW-trending Gaeum Fault System in the Gyeongsang Basin,SE Korea. The fault is traced for over ca....This study focuses on the geometry and kinematics of the Sinnyeong Fault which is the most conspicuous fault among the WNW-trending Gaeum Fault System in the Gyeongsang Basin,SE Korea. The fault is traced for over ca.70 kmand has a consistent WNW-trending strike with a nearly vertical dip. It has an asymmetric fault damage zone of several meters to several tens of meters in width and a several meter-thick fault core. Its main movement is interpreted as sinistral-reverse oblique-slip or sinistral strike-slip under NE-SW compressional stress regime, although it could have experienced other faultings with different senses before/after this movement. Cylindrical folds, having the NW-trending fold axes of low angle plunge, are only observed along the southern damage zone of the fault with a continuous narrow width of several tens of meters. It is thus interpreted that the formation of the folds and sinistral movement of the fault were almost contemporaneously generated due to the concentration of the regional NE-SW compressional stress along pre-existing WNW-trending faults or densely populated fracture zone in a relatively stable intraplate region.展开更多
Residual stress is one of the factors affecting the machining deformation of monolithic structure parts in the aviation industry. Thus, the studies on machining deformation rules induced by residual stresses largely d...Residual stress is one of the factors affecting the machining deformation of monolithic structure parts in the aviation industry. Thus, the studies on machining deformation rules induced by residual stresses largely depend on correctly and efficiently measuring the residual stresses of workpieccs. A modified layer-removal method is proposed to measure residual stress by analysing the characteristics of a traditional, layer-removal method. The coefficients of strain release are then deduced according to the simulation results using the finite element method (FEM). Moreover, the residual stress in a 7075T651 aluminium alloy plate is measured using the proposed method, and the results are then analyzed and compared with the data obtained by the traditional methods. The analysis indicates that the modified layer-removal method is effective and practical for measuring the residual stress distribution in pre-stretched aluminium alloy plates.展开更多
文摘Objective: To investigate the occurrence of PTSD in pre-hospital emergency nurses and its related factors, and to compare the differences of neurotransmitter and immune-related factors between pre-hospital emergency nurses who experienced traumatic events and those who did not develop PTSD and healthy people. How: Post-traumatic Stress Disorder Self-Rating Scale (PCL-C) tests were performed on pre-hospital emergency nurses in PTSD group, non-PTSD group and healthy control group, and the plasma monoamine neurotransmitters and serum cytokines were determined by double-antibody sandwich ABC-ELISA assay using enzyme-linked adsorption kit provided by Shanghai Xitang Biotechnology Co., Ltd. Results: 1) There were statistically significant differences in PCL-C scores between PTSD group, non-PTSD group and healthy group (p α between PTSD group, non-PTSD group and healthy group (p Conclusion: Pre-hospital emergency nurses should have early psychological intervention and guidance to reduce the occurrence of PTSD in emergency and emergency nurses.
文摘A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-designed test setup.Experiments are conducted on the fishbone shaped specimen under conventional welding and welding with various pre-stress values.The experimental results turn out that,the initiation rate of the weld hot cracks decreases with increasing values of the compressive pre-stress.When the pre-stress reaches 0.3-0.4 of the yield stress,the cracks even disappear.In mechanical viewpoint,the researches here develop a new way to control weld cracks.
基金National Natural Science Foundation of China under Grant No.51178029 State Key Laboratory for Disaster Reduction in Civil Engineering at Tongji University under Grant No.SLDRCE08-MB-01
文摘Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hysteresis effect in this strengthening method, and pre-tensioning the FRP can overcome this problem. This paper presents test results of 25 circular RC columns strengthened with pre-stressed FRP strips under low cyclic loading. The pre-stressing of the FRP strips, types of FRP strips and longitudinal reinforcement, axial load ratio, pre-damage degree and surface treatments of the specimens are considered as the primary factors in the tests. According to the failure modes and hysteresis curves of the specimens, these factors are analyzed to investigate their effect on bearing capacity, ductility, hysteretic behavior, energy dissipation capacity and other important seismic behaviors. The results show that the initial lateral confined stress provided by pre-stressed FRP strips can effectively inhibit the emergence and development of diagonal shear cracks, and change the failure modes of specimens from brittle shear failure to bending or bending-shear failure with better ductility. As a result, the bearing capacity, ductility, energy dissipation capacity and deformation capacity of the strengthened specimens are all significantly improved.
文摘Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performance into full play, and to treat with landslide fast and economically. The difference between them is that the pre-stressed rope will transfix the whole anti- sliding pile through a prearranged pipe in this structure. The working mechanics, the design method and economic benefit are studied. The results show that the pre-stressed rope reinforced anti-sliding pile can treat with the small and middle landslides or high slopes well and possess the notable advantage of technology and economic.
基金Funded by National Natural Science Foundation of China(Nos.U1134008 and 51302090)the Fundamental Research Funds for the Central Universities(No.2015ZJ0005)
文摘Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.
文摘With a micro mechanical model, the feasibility of modification of thermal residual stress of the composites treated by tensile pre plastic deformation was analyzed. The relationship between pre plastic strain and variation of thermal residual stress was established. By using the method of tensile pre plastic deformation, the thermal residual stress in 20%SiC w/6061Al composites was modified. The results show that, with increasing tensile pre plastic strain, the tensile residual stress in the matrix was decreased to zero gradually, and then it was turned into compressive stress. By comparison, it was found that the changing tendency of the test results is similar to that of theoretical analysis. In addition, due to pre plastic deformation, the dislocation density in the matrix was increased, and the yield strength of the composites was improved. The increasing yield strength is mainly due to the decreasing tensile residual stress and the changing of distribution of dislocation in the matrix.
文摘Based on the conventional uniaxial pre-tensile stress method during welding, this study presents a new method of welding with biaxial pre-stress. With the help of numerical simulation, experiments were carried out on the self-designed device. Except for the control on residual stress and distortion us-welded, the experimental results also show its effect on the prevention of hot cracks, thus this method can make up for the disadvantage of the conventional pre-stress method. Hot cracks disappear when the value of pre-stress surpasses 0. 2 σs(yield limit). Welded thin plates with low-level residual stress, little distortion and no hot cracks are obtained with longitudinal pre-tensile stress level between 0. 6σsand 0. 7σs and precompressive stress between 0. 2 σs and 0. 3 σs in transverse direction.
文摘An anchor bearing plate transfers the anchoring force from anchor plate to the concrete and the pre-stress is formed in the concrete structure. Currently, the main type of anchor bearing plate is cast iron. It is brittle during transportation and tension process. This paper presents a new type of anchor bearing plate combined stamping with welding forming. The structure of the new type anchor bearing plate is introduced. The stress states of the anchor bearing plate and anchorage zone under work are studied. Various specifications of anchor bearing plate are studied by ANSYS finite element analysis software following the AASHTO specification. The analysis results are compared with the results of the same type of OVM round-shaped anchor plate. The study results show that the new pre-stressed anchor plates combined stamping with welding forming are feasible and more sturdy which can meet the engineering demand.
文摘Because posttraumatic stress disorder(PTSD) is a highly debilitating condition, prevention is an important research topic. This article reviews possible prevention approaches that involve the administration of drugs before the traumatic event takes place. The considered approaches include drugs that address the sympathetic nervous system, drugs interfere with the hypothalamic-pituitary-adrenal(HPA) axis, narcotics and other psychoactive drugs, as well as modulators of protein synthesis. Furthermore, some thoughts on potential ethical implications of the use of drugs for the primary prevention of PTDS are presented. While there are many barriers to overcome in this field of study, this paper concludes with a call for additional research, as there are currently no approaches that are well-suited for regular daily use.
基金financially supported by the State Key Fundamental Research Program of China (No. 2005CB623706)
文摘The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (SSRT), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that the alloy is susceptible to SCC in 3.5% NaCI water solution and not in air. At the same pre-deformation, the alloy is more susceptible to SCC at 1.33 × 10^-5 s^-1 than at 6.66 × 10^-5 s^-1. Moreover, it is more susceptible to SCC at free pre-deformation than at 10% pre-deformation at the same strain rate. The number of 0 precipitated along the grain boundaries is reduced and distributed discontinuously, at the same time, the precipitate-free zones (PFZ) become narrow and the susceptibility to stress corrosion cracking is reduced after 10% pre-deformation.
文摘High-κ /Ge gate stack has recently attracted a great deal of attention as a potential candidate to replace planar silicon transistors for sub-22 generation. However, the desorption and volatilization of GeO hamper the development of Ge-based devices. To cope with this challenge, various techniques have been proposed to improve the high-κ /Ge interface. However,these techniques have not been developed perfectly yet to control the interface. Therefore, in this paper, we propose an improved stress relieved pre-oxide(SRPO) method to improve the thermodynamic stability of the high-κ /Ge interface. The x-ray photoelectron spectroscopy(XPS) and atomic force microscopy(AFM) results indicate that the GeO volatilization of the high-κ /Ge gate stack is efficiently suppressed after 500℃ annealing, and the electrical characteristics are greatly improved.
文摘This study focuses on the geometry and kinematics of the Sinnyeong Fault which is the most conspicuous fault among the WNW-trending Gaeum Fault System in the Gyeongsang Basin,SE Korea. The fault is traced for over ca.70 kmand has a consistent WNW-trending strike with a nearly vertical dip. It has an asymmetric fault damage zone of several meters to several tens of meters in width and a several meter-thick fault core. Its main movement is interpreted as sinistral-reverse oblique-slip or sinistral strike-slip under NE-SW compressional stress regime, although it could have experienced other faultings with different senses before/after this movement. Cylindrical folds, having the NW-trending fold axes of low angle plunge, are only observed along the southern damage zone of the fault with a continuous narrow width of several tens of meters. It is thus interpreted that the formation of the folds and sinistral movement of the fault were almost contemporaneously generated due to the concentration of the regional NE-SW compressional stress along pre-existing WNW-trending faults or densely populated fracture zone in a relatively stable intraplate region.
基金Sponsored by the National Science and Technology Major Project(Grant No.2014ZX04001011)
文摘Residual stress is one of the factors affecting the machining deformation of monolithic structure parts in the aviation industry. Thus, the studies on machining deformation rules induced by residual stresses largely depend on correctly and efficiently measuring the residual stresses of workpieccs. A modified layer-removal method is proposed to measure residual stress by analysing the characteristics of a traditional, layer-removal method. The coefficients of strain release are then deduced according to the simulation results using the finite element method (FEM). Moreover, the residual stress in a 7075T651 aluminium alloy plate is measured using the proposed method, and the results are then analyzed and compared with the data obtained by the traditional methods. The analysis indicates that the modified layer-removal method is effective and practical for measuring the residual stress distribution in pre-stretched aluminium alloy plates.