期刊文献+
共找到2,573篇文章
< 1 2 129 >
每页显示 20 50 100
Application of Serum CK and BUN Determination in Monitoring Pre-Competition Training of Badminton Athletes 被引量:7
1
作者 阳云 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2007年第1期114-116,共3页
In order to investigate the feasibility of serum creatine kinase (CK) and blood urea nitrogen (BUN) in monitoring pre-competition training of badminton athletes, the pre-competition training load of 20 badminton a... In order to investigate the feasibility of serum creatine kinase (CK) and blood urea nitrogen (BUN) in monitoring pre-competition training of badminton athletes, the pre-competition training load of 20 badminton athletes was studied, and serum CK and BUN were determined before, immediate and next morning after training. The results showed that after intensive training for one week, serum CK levels were significantly increased by 57.53 mmol/L (P〈0.05). After regulation of the training intensity, average serum CK levels were increased by 21.79 mmol/L (P〈0.05). BUN contents were increased by 0.83 mmol/L on average with the difference being not significant (P〉0.05). After intermittent training, there was significant difference in the average increased levels of serum CK in athletes (P〈0.05). There was significant difference before and after regulation of training (P〈0.05). The increased levels of BUN were 0.78 mmol/L without significant difference (P〉0.05). It was concluded that serum CK was one of the biochemical indicators monitoring the training load sensitivity of badminton athletes, but BUN was of little value in monitoring the training load. Both serum CK and BUN recovered slowly after one-week intensive training and intermittent training, suggesting the metabolic mechanism of human body in training needs further study. 展开更多
关键词 competitive badminton athletes serum creatine kinase blood urea nitrogen pre-competition training
下载PDF
Effective distributed convolutional neural network architecture for remote sensing images target classification with a pre-training approach 被引量:3
2
作者 LI Binquan HU Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期238-244,共7页
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif... How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks. 展开更多
关键词 convolutional NEURAL network (CNN) DISTRIBUTED architecture REMOTE SENSING images (RSIs) TARGET classification pre-training
下载PDF
Pre/Post Assessments Analysis in Training Electro-Technical Seafarers Experts
3
作者 E. A. Karagianni E. P. Apostolopoulou +4 位作者 I. M. Prousalidis I. K. Gyparis A. D. Tsigopoulos C. N. Vazouras Ai. E. Tsiakla 《Journal of Shipping and Ocean Engineering》 2019年第1期14-29,共16页
In maritime industry, personnel’s training is considered by shipping companies as a top priority matter on the list of factors affecting competitiveness in operating vessels. This paper presents the importance and th... In maritime industry, personnel’s training is considered by shipping companies as a top priority matter on the list of factors affecting competitiveness in operating vessels. This paper presents the importance and the effects of training Electro-Technical Experts in the context of latest developments, particularly the advent of the “Electric Ship” and the “Communicative Ship” analyzing the feedback received from several relevant two-days seminars for “Ship Electrical and Electronic Systems for Electro-Technical Officers”, in North East European countries. The pre-test and post-test self assessment method that has been used for more efficient interaction between trainers and trainees is analyzed using t-statistics. The attendees have had diverse basic backgrounds, yet company experts Fleet Engineers on merchant or war ships. The training’s effectiveness and gain is discussed in this paper and further proposals for the Electrical and Electronic training are presented through the valuable feedback for improvement. 展开更多
关键词 Electro-technical officers maritime education and training pre/post testing SELF-ASSESSMENT standards of training certification and watch keeping t-test training experts
下载PDF
Outcomes of the Expanded Programme on Immunization Pre-Service Training Initiatives in Kenya: A Mixed Methods Study
4
作者 Iqbal Hossain Evans Mokaya +2 位作者 Isaac Mugoya Folake Olayinka Lora Shimp 《World Journal of Vaccines》 2019年第4期85-98,共14页
Background: The Maternal and Child Survival Program of United States Agency for International Development conducted a study in 2017 to assess the outcome of an initiative to strengthen Expanded Programme on Immunizati... Background: The Maternal and Child Survival Program of United States Agency for International Development conducted a study in 2017 to assess the outcome of an initiative to strengthen Expanded Programme on Immunization (EPI) pre-service training. The pre-service training initiative was undertaken by the Ministry of Health (MOH) with support from partners in 2012-2016. The overall objective of the study was to assess the adoption and effectiveness of the initiative in the competency (knowledge, skills and attitude) of graduate nurses. Methods: The study included a conveniently selected sample of 14 pre-service training institutions, 23 field practicum sites, and 29 health facilities in western Kenya, and used quantitative and qualitative methods of data collection. Results: All pre-service training institutions were found to have adapted the WHO EPI prototype curriculum. Overall, tutors followed training method in the classroom as suggested in the curriculum, except evaluation of students’ learning lacked tests or quizzes. Students had opportunities for hands-on practical experience in the field practicum sites. Graduate nurses were found to have acquired the skills for vaccinating children. However, some pre-service training institutions lacked functional skills labs for practical learning of students. In addition, students did not receive up-to-date information on EPI program, and lacked knowledge and skills on monitoring and documentation of EPI coverage during preservice training. Conclusions: It appears that the EPI pre-service training strengthening initiatives facilitated competency-based EPI training of nurses in Kenya. However, preservice training institutions still have scope for improvement in the skills lab, hand-washing practice, providing up-to-date information, and training students on coverage monitoring and documentation. 展开更多
关键词 pre-SERVICE training GRADUATE Nurses IMMUNIZATION COMPETENCY
下载PDF
Analysis of the Effect of Systematic Pre-Job Training for Nurses in Isolation Wards during the COVID-19 Pandemic
5
作者 Wen Yang Mei Zhang +4 位作者 Li Rong Ruijuan Wen Dezhen Cui Yumei Lin Lei Huang 《Open Journal of Nursing》 2022年第4期279-289,共11页
Objective: To explore the effect of systematic pre-job training for isolation ward nurses during the Corona Virus Disease 2019 (COVID-19) pandemic. Methods: Establish a pre-job training program for the isolation ... Objective: To explore the effect of systematic pre-job training for isolation ward nurses during the Corona Virus Disease 2019 (COVID-19) pandemic. Methods: Establish a pre-job training program for the isolation ward for COVID-19, standardize the content of theoretical and skill training, formulate training SOPs, and conduct training for the nurses using online teaching assessment, video teaching, on-site scenario simulation operation drills, as well as real-time protection guidance and supervision. 60 nurses from non-infectious departments temporarily selected by the hospital were trained;the theoretical knowledge scores, quarantine techniques, and nursing quality of nurses before and after the training were compared, and the effect of the intervention was evaluated. Results: The scores of the COVID-19 protection theory test were 81.17 ± 8.46 after the nurses were trained for 3 days. The pass rates of hand hygiene compliance tests and protective clothing putting-on and taking-off practices were 96.67% and 100%, respectively. There was no significant difference between the scores of the COVID-19 protection theory test for the nurses that were trained for 3 days and the scores for the nurses originally at the quarantine zone (81.59 ± 7.59, P > 0.05). The pass rate of hand hygiene compliance and the pass rate of protective clothing putting-on and taking-off practices were significantly improved compared with those before training (81.67% and 56.67% respectively, P < 0.001). The scores of the COVID-19 protection theory test at 30 days of training were 95.67 ± 5.89, which were significantly higher than those at 3 days of training (P < 0.001). The qualified rate of disinfection and quarantine in the first month for the trained nurses entering the isolation ward was 89.47%;compared with that for the nurses originally in the isolation wards (94.7%), there was no significant difference (P > 0.05). The comprehensive nursing ability scores of bedside nurses in the first month of training were 80.14 ± 5.63, which were lower than those of nurses originally in the isolation wards (86.88 ± 4.53, P Conclusion: Systematic pre-job training for nurses in isolation wards can help improve nurses’ knowledge of the COVID-19, self-protection awareness, and protection skills, and can quickly train nurses who are competent for work in isolation wards. It is an important guarantee of “zero infection” for medical staff, and it can quickly and effectively help medical institutions respond to the COVID-19 pandemic in an emergency. 展开更多
关键词 Corona Virus Disease 2019 (COVID-19) Nurses Systematic pre-Job training
下载PDF
Towards Realizing Mandarin-Tibetan Bi-lingual Emotional Speech Synthesis with Mandarin Emotional Training Corpus
6
作者 Peiwen Wu Hongwu Yang Zhenye Gan 《国际计算机前沿大会会议论文集》 2017年第2期29-32,共4页
This paper presents a method of hidden Markov model (HMM)-based Mandarin-Tibetan bi-lingual emotional speech synthesis by speaker adaptive training with a Mandarin emotional speech corpus.A one-speaker Tibetan neutral... This paper presents a method of hidden Markov model (HMM)-based Mandarin-Tibetan bi-lingual emotional speech synthesis by speaker adaptive training with a Mandarin emotional speech corpus.A one-speaker Tibetan neutral speech corpus, a multi-speaker Mandarin neutral speech corpus and a multi-speaker Mandarin emotional speech corpus are firstly employed to train a set of mixed language average acoustic models of target emotion by using speaker adaptive training.Then a one-speaker Mandarin neutral speech corpus or a one-speaker Tibetan neutral speech corpus is adopted to obtain a set of speaker dependent acoustic models of target emotion by using the speaker adap-tation transformation. The Mandarin emotional speech or the Tibetan emotional speech is finally synthesized from Mandarin speaker depen-dent acoustic models of target emotion or Tibetan speaker dependent acoustic models of target emotion. Subjective tests show that the aver-age emotional mean opinion score is 4.14 for Tibetan and 4.26 for Mandarin. The average mean opinion score is 4.16 for Tibetan and 4.28 for Mandarin. The average degradation opinion score is 4.28 for Tibetan and 4.24 for Mandarin. Therefore, the proposed method can synthesize both Tibetan speech and Mandarin speech with high naturalness and emotional expression by using only Mandarin emotional training speech corpus. 展开更多
关键词 Mandarin-Tibetan cross-lingual EMOTIONAL SPEECH SYNTHESIS hidden Markov model (hmm) Speaker adaptive training Mandarin-Tibetan cross-lingual SPEECH SYNTHESIS EMOTIONAL SPEECH SYNTHESIS
下载PDF
基于HMM的步态身份识别 被引量:6
7
作者 高大利 吴清江 孙凌 《计算机工程与应用》 CSCD 北大核心 2006年第16期53-56,166,共5页
随着生物识别悄然兴起,生物识别技术逐渐成为新的身份识别技术。步态识别是生物特征识别技术的一个新兴子领域。文章就是将隐马尔可夫模型(HMM,HiddenMarkovModel)方法运用在步态身份识别中,并进行了其识别性能的研究。该文给出了一个基... 随着生物识别悄然兴起,生物识别技术逐渐成为新的身份识别技术。步态识别是生物特征识别技术的一个新兴子领域。文章就是将隐马尔可夫模型(HMM,HiddenMarkovModel)方法运用在步态身份识别中,并进行了其识别性能的研究。该文给出了一个基于HMM的步态身份识别方案,并进行了图像预处理,HMM参数训练和识别的研究,得出了一些有意义的结论。同时在中国科学院自动化研究所提供的CASIA步态数据库上进行了步态身份识别实验,实验结果表明:在侧面视角下采用此方法,具有较好的识别率。 展开更多
关键词 步态识别 hmm模型 hmm训练
下载PDF
GMD-SDDBHMM语音识别模型和分类训练方法 被引量:3
8
作者 杨浩荣 刘加 +1 位作者 王作英 陆大 《通信学报》 EI CSCD 北大核心 1998年第4期35-42,共8页
本文将混合高斯分布应用于一种非齐次隐含马尔可夫模型——简化的基于段长分布的隐含马尔可夫模型。新模型使语音识别率得到了改善。由于通常的模型训练方法训练时间太长,本文提出了一种分类训练方法,在不降低最终模型性能的前提下,... 本文将混合高斯分布应用于一种非齐次隐含马尔可夫模型——简化的基于段长分布的隐含马尔可夫模型。新模型使语音识别率得到了改善。由于通常的模型训练方法训练时间太长,本文提出了一种分类训练方法,在不降低最终模型性能的前提下,使训练可以分布式完成。 展开更多
关键词 混合高斯分布 分类训练 语音识别 hmm
下载PDF
基于HMM的列车轨道占用自动识别算法研究 被引量:12
9
作者 王剑 张辉 +1 位作者 蔡伯根 陈德旺 《铁道学报》 EI CAS CSCD 北大核心 2009年第3期54-58,共5页
在列车运行控制系统中,及时准确地了解列车所在位置事关列车运行安全。在车站,列控系统需要准确了解列车所在股道,以控制两列列车在车站交会或越行。由于车站股道密集,单纯依靠卫星定位系统(GNSS)确定列车所在的股道有较大困难。隐马尔... 在列车运行控制系统中,及时准确地了解列车所在位置事关列车运行安全。在车站,列控系统需要准确了解列车所在股道,以控制两列列车在车站交会或越行。由于车站股道密集,单纯依靠卫星定位系统(GNSS)确定列车所在的股道有较大困难。隐马尔可夫模型(HMM)是广泛应用于语音处理的一种时间序列统计模型,本文将HMM应用到列车股道占用自动识别中,对列车运行轨迹建立HMM,解决了卫星定位系统用于列车定位时列车占用股道的识别问题。对于HMM状态个数、卫星定位输出频率与列车运行速度对识别的影响等做了进一步的研究,得出优化参数。 展开更多
关键词 股道占用识别 列车定位 隐马尔可夫模型 全球导航定位系统
下载PDF
基于HMM方法的动态手势轨迹训练性能研究 被引量:2
10
作者 张博洋 吴晓娟 +1 位作者 葛庆国 王磊 《信号处理》 CSCD 2004年第6期662-666,共5页
基于HMM(Hidden Markov Model,隐形马尔可夫模型)对动态手势轨迹的训练是手势识别的关键技术之一。本文对HMM的模型训练采用Baum.Welch算法,并分别从迭代次数,样本个数选取,以及模型初值选取等方面对动态手势轨迹的训练性能进行了研究... 基于HMM(Hidden Markov Model,隐形马尔可夫模型)对动态手势轨迹的训练是手势识别的关键技术之一。本文对HMM的模型训练采用Baum.Welch算法,并分别从迭代次数,样本个数选取,以及模型初值选取等方面对动态手势轨迹的训练性能进行了研究。实验结果表明HMM方法对具有时空特性的动态手势轨迹识别是非常有效的。 展开更多
关键词 hmm 手势识别 模型训练 轨迹 动态 隐形 马尔可夫模型 个数 选取 实验结果
下载PDF
基于连续HMM的孤立语音鲁棒性识别方法 被引量:5
11
作者 徐文盛 戴蓓倩 +1 位作者 方绍武 李辉 《电路与系统学报》 CSCD 1999年第4期19-23,共5页
对于基于连续隐马尔可夫模型(CHMM)的语音识别系统,为了提高系统在环境噪声下的鲁棒性,本文提出了一种能有效抑制加性平稳噪声和通道卷积噪声的相对自相关序列的Mel倒谱参数(RAS_MFCC+△RAS_NFCC),进行特征参数级的去噪,明显... 对于基于连续隐马尔可夫模型(CHMM)的语音识别系统,为了提高系统在环境噪声下的鲁棒性,本文提出了一种能有效抑制加性平稳噪声和通道卷积噪声的相对自相关序列的Mel倒谱参数(RAS_MFCC+△RAS_NFCC),进行特征参数级的去噪,明显地改善了系统的噪声鲁棒性。为了进一步提高系统在低信噪比语音时的识别性能,我们采用了CHMM的混合语青训练法,获得了对各种信噪比语音都具有很强适应性的CHMM参数。实验证明。 展开更多
关键词 马尔可夫模型 鲁棒性 语音识别 Chmm
下载PDF
混合种群多样性自适应遗传操作的HMM训练模型 被引量:4
12
作者 王相海 丛志环 +1 位作者 方玲玲 宋传鸣 《计算机研究与发展》 EI CSCD 北大核心 2014年第8期1833-1844,共12页
针对传统GA方法训练HMM模型所存在的对遗传控制参数具有较强的敏感性的问题:1)提出一种以混合遗传种群多样性为原则的BPD-AGA算法,该算法依据决定种群多样性的基因型和表现型来自适应地调整遗传参数,使整个遗传迭代过程能够在扩大遗传... 针对传统GA方法训练HMM模型所存在的对遗传控制参数具有较强的敏感性的问题:1)提出一种以混合遗传种群多样性为原则的BPD-AGA算法,该算法依据决定种群多样性的基因型和表现型来自适应地调整遗传参数,使整个遗传迭代过程能够在扩大遗传搜索空间的同时提高最优解的质量;2)提出了一种基于BPD-AGA的HMM训练模型,该模型一方面利用BPD-AGA的自适应选择操作,选择对混合种群多样性贡献最大的个体作为竞争优胜者;另一方面利用BPD-AGA的自适应交叉变异操作,在扩大算法搜索空间的同时保护对混合种群多样性贡献较大的个体,从而保证了HMM解个体的全局最优性;3)为了提高BPD-AGA训练的收敛速度,利用Baum-Welch算法从外部对BPD-AGA的收敛性进行了改善,提出了一个从外部和内部同时改善GA性能的BPD-AGA/Baum-Welch混合模型;4)给出了将所提出的模型和算法应用在交通视频车辆行驶状态判别中的实现过程.仿真实验验证了所提出模型和算法的有效性. 展开更多
关键词 混合遗传种群多样性 自适应遗传算法 hmm训练模型 车辆行驶状态 实时判别
下载PDF
一种新的HMM训练方法 被引量:2
13
作者 贺前华 陆以勤 韦岗 《电子学报》 EI CAS CSCD 北大核心 2000年第9期56-58,共3页
本文是对HMM最大距离训练方法的一种改进 ,该方法采用了更合理的模型距离定义 ,能更有效地利用训练数据集中的区别信息 ,使有限的训练数据得到更好的应用 ,达到提高语音识别系统性能的目的 .导出了HMM模型参数的迭代公式 .基于TIMIT数... 本文是对HMM最大距离训练方法的一种改进 ,该方法采用了更合理的模型距离定义 ,能更有效地利用训练数据集中的区别信息 ,使有限的训练数据得到更好的应用 ,达到提高语音识别系统性能的目的 .导出了HMM模型参数的迭代公式 .基于TIMIT数据库的非连续语音及连续语音实验结果表明 。 展开更多
关键词 隐马尔可夫模型 训练方法 判决信息
下载PDF
Recognition of Speech Based on HMM/MLP Hybrid Network
14
作者 黄心晔 马小辉 +2 位作者 李想 富煜清 陆佶人 《Journal of Southeast University(English Edition)》 EI CAS 2000年第2期26-30,共5页
This paper presents a new HMM/MLP hybrid network for speech recognition. By taking advantage of the discriminative training of MLP, the unreasonable model correctness assumption on the model correctness of the ML trai... This paper presents a new HMM/MLP hybrid network for speech recognition. By taking advantage of the discriminative training of MLP, the unreasonable model correctness assumption on the model correctness of the ML training in basic HMM can be overcome, and its discriminative ability and recognition performance can be improved. Experimental results demonstrate that the discriminative ability and recognition performance of HMM/MLP is apparently better than normal HMM. 展开更多
关键词 hmm/MLP hybrid network discriminative training speech recognition
下载PDF
一个基于改进的HMM的人脸语音动画合成系统
15
作者 叶静 董兰芳 +1 位作者 王洵 万寿红 《计算机工程》 CAS CSCD 北大核心 2005年第13期165-167,219,共4页
利用HMM的统计特性,对HMM模型结构进行改动,使其成为人脸语音动画合成中语音特征到图像特征的映射模型。通过一些必要的前期处理,就可以根据训练样本建立特定说话对象的HMM。使用该模型,加上一些必要的后期处理工作,就可以通过输入的语... 利用HMM的统计特性,对HMM模型结构进行改动,使其成为人脸语音动画合成中语音特征到图像特征的映射模型。通过一些必要的前期处理,就可以根据训练样本建立特定说话对象的HMM。使用该模型,加上一些必要的后期处理工作,就可以通过输入的语音信号合成语种无关的、平滑的、并富有真实感的人脸语音动画。 展开更多
关键词 语音动画 隐马尔可夫模型 预处理
下载PDF
利用HMM嵌入训练方法建立汉语电话连续语音声学模型 被引量:3
16
作者 张宗红 陈愉 +2 位作者 冯哲 邵央 李宗葛 《计算机工程与应用》 CSCD 北大核心 2000年第6期36-38,共3页
文章介绍了用HMM嵌入训练方法来建立连续语音的声学模型,并对基于音素的HMM和基于音节的HMM进行了比较,并以此为基础建立了一个实用的银行电话语音服务系统。
关键词 嵌入训练 电话语音识别 连续语音 声学模型 hmm
下载PDF
符号序列的预训练HMM分类方法 被引量:2
17
作者 陈炳鑫 陈黎飞 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期52-58,共7页
隐马尔可夫模型(Hidden Markov Model,HMM)是一种双重随机概率模型,已广泛应用于序列数据建模.针对符号序列分类中距离度量定义的困难,提出一种符号序列的预训练HMM分类新方法.首先,定义一种基于HMM状态转移矩阵的序列距离新度量;其次,... 隐马尔可夫模型(Hidden Markov Model,HMM)是一种双重随机概率模型,已广泛应用于序列数据建模.针对符号序列分类中距离度量定义的困难,提出一种符号序列的预训练HMM分类新方法.首先,定义一种基于HMM状态转移矩阵的序列距离新度量;其次,为得到不同序列在HMM隐状态共享条件下的状态转移矩阵,提出一种两阶段的预训练方法,先在所有序列上进行HMM预训练以学习所有序列共享的隐状态,再使用共享状态为每条序列进行训练得到各自的状态转移矩阵;最后用近邻分类器对符号序列进行基于距离的分类.在三个应用领域的真实序列上进行了实验,并与基于子序列、HMM变体模型等现有分类方法进行对比,结果表明,所提出的方法能使用较低的特征维度取得较理想的分类精度. 展开更多
关键词 符号序列 序列距离度量 预训练hmm 特征表示 分类
下载PDF
基于DNN-HMM和RNN的维吾尔语语音识别 被引量:4
18
作者 阿地力江·阿布都尼亚孜 米吉提·阿不里米提 艾斯卡尔·艾木都拉 《现代电子技术》 2021年第17期90-94,共5页
基于深层神经网络(DNN)的语音识别模型不仅在单个语言上表现出色,而且在多语言信息处理领域也表现出了优异的能力。随着语音数据量的增加,高斯混合模型(GMM)在有效提升大词汇量连续语音识别系统性能以及识别效果上被神经网络(NN)模型超... 基于深层神经网络(DNN)的语音识别模型不仅在单个语言上表现出色,而且在多语言信息处理领域也表现出了优异的能力。随着语音数据量的增加,高斯混合模型(GMM)在有效提升大词汇量连续语音识别系统性能以及识别效果上被神经网络(NN)模型超越。文中采用Kaldi开源语音识别平台,结合RNN语言模型和DNN模型的三种损失函数,即最大互信息量(MMI)、最小贝叶斯风险(sMBR)和最小因素错误率(MPE),在维吾尔语语料库(THUYG-20公开语料库)测试数据上分别取得了16.73%,16.55%和15.95%的词错误率。相比高斯混合模型的词错误率分别降低了2.88%,3.06%和3.66%。深层神经网络在资源匮乏的少数民族语言以及多语言信息处理上有更强的能力。 展开更多
关键词 维吾尔语语音识别 RNN语言模型 DNN-hmm 声学模型 判别式训练 损失函数 Kaldi
下载PDF
Prefix-LSDPM:面向小样本的在线学习会话退出预测模型
19
作者 陈芮 李飞 王占全 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第5期754-763,共10页
在线学习会话退出预测旨在准确预测在线学习过程中的学习会话退出,是智慧教育领域中十分重要的一项研究任务。针对现有模型在小样本场景下预测准确率较低的问题,提出了基于前缀提示的在线学习会话退出预测模型Prefix-LSDPM。该模型为获... 在线学习会话退出预测旨在准确预测在线学习过程中的学习会话退出,是智慧教育领域中十分重要的一项研究任务。针对现有模型在小样本场景下预测准确率较低的问题,提出了基于前缀提示的在线学习会话退出预测模型Prefix-LSDPM。该模型为获取单个学习行为内部特征及连续学习行为之间的隐含关联信息,在改进了键值向量的Transformer网络中对提示形式的合成序列进行掩码学习;为降低模型训练涉及的参数量以适应小样本学习,将学习会话退出预测任务建模形式靠近预训练任务,并在冻结的预训练参数基础上对提示参数进行调优。基于多个数据集的实验结果表明,Prefix-LSDPM的预测准确率优于现有模型,且在小样本学习中仍能达到较好的预测效果。 展开更多
关键词 提示学习 预训练 学习会话 退出预测 小样本学习
下载PDF
自适应特征融合的多模态实体对齐研究 被引量:2
20
作者 郭浩 李欣奕 +2 位作者 唐九阳 郭延明 赵翔 《自动化学报》 EI CAS CSCD 北大核心 2024年第4期758-770,共13页
多模态数据间交互式任务的兴起对于综合利用不同模态的知识提出了更高的要求,因此融合不同模态知识的多模态知识图谱应运而生.然而,现有多模态知识图谱存在图谱知识不完整的问题,严重阻碍对信息的有效利用.缓解此问题的有效方法是通过... 多模态数据间交互式任务的兴起对于综合利用不同模态的知识提出了更高的要求,因此融合不同模态知识的多模态知识图谱应运而生.然而,现有多模态知识图谱存在图谱知识不完整的问题,严重阻碍对信息的有效利用.缓解此问题的有效方法是通过实体对齐进行知识图谱补全.当前多模态实体对齐方法以固定权重融合多种模态信息,在融合过程中忽略不同模态信息贡献的差异性.为解决上述问题,设计一套自适应特征融合机制,根据不同模态数据质量动态融合实体结构信息和视觉信息.此外,考虑到视觉信息质量不高、知识图谱之间的结构差异也影响实体对齐的效果,本文分别设计提升视觉信息有效利用率的视觉特征处理模块以及缓和结构差异性的三元组筛选模块.在多模态实体对齐任务上的实验结果表明,提出的多模态实体对齐方法的性能优于当前最好的方法. 展开更多
关键词 多模态知识图谱 实体对齐 预训练模型 特征融合
下载PDF
上一页 1 2 129 下一页 到第
使用帮助 返回顶部