Support crushing and water inrush when mining under an unconsolidated confined aquifer in the Qidong Coal Mine was prevented by roof pre-blasting. The mechanism and applicable conditions for this method have been stud...Support crushing and water inrush when mining under an unconsolidated confined aquifer in the Qidong Coal Mine was prevented by roof pre-blasting. The mechanism and applicable conditions for this method have been studied. The results show that when an overburden structure that may cause support crushing and a water inrush accident exists the weakening of the primary key stratum, which thereby reduces its weighting step, roof pre-blasting is both feasible and effective. If the position of the primary key stratum can be moved upward to exceed 10 times the mining height the possibility of support crushing and water inrush disaster caused by key stratum compound breakage will be lowered. The overburden structure of the number 7121 working face was considered during the design of a technical proposal involving roof pre-blasting. After comprehensively analyzing the applicability of roof pre-blasting the resulting design prevented support crushing and water inrush disasters from happening at the number 7121 working face and laid a solid foundation for mining safely.展开更多
The development of the 6-layered cerebral neocortex is one of the most important events during nervous system development, and disturbances could result in various malformations, causing clinically intractable disease...The development of the 6-layered cerebral neocortex is one of the most important events during nervous system development, and disturbances could result in various malformations, causing clinically intractable diseases, such as epilepsy and cerebral palsy. Pre-plate splitting is the first developmental step of the cortical plate formation. Without correct pre-plate splitting, normal cerebral cortex structures are disturbed. The Reelin-Dabl molecular pathway plays a critical role during cerebral cortex development, and deficiencies in this pathway result in failed pre-plate splitting and an inverted cortical plate. This paper summarizes findings involving Reelin and pre-plate splitting and further explores the precise role of Reelin during pre-plate splitting.展开更多
With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction pro...With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting.展开更多
A quantitative research was conducted at Tschudi mine, Tsumeb, Namibia with its main drive being to determine the influence that density and blast parameters has on the performance of a blast. The factors that are mos...A quantitative research was conducted at Tschudi mine, Tsumeb, Namibia with its main drive being to determine the influence that density and blast parameters has on the performance of a blast. The factors that are most vital to the fragmentation process are classified into three namely: explosive parameters, rock parameters and blast geometry. Rock fragmentation is dependent on two main factors, the rock properties which are uncontrollable and the blasting parameters that can be manipulated to give maximum efficiency. The selected variable quantities, density, charge length, volume of blast and mass of charge per hole were recorded after observation, determined via laboratory testing or calculated from their known equations. The main objective is to develop a model to predict blasting performance, and this will be achieved with the use of the Kuz-Ram model. The proposed equation related mean expected fragmentation size (calculated using the Kuz-Ram fragmentation model) to the actual fragmentation. Blasting parameters namely: burden, spacing, and charge quantity that are not included in this study were measured or calculated on site to facilitate the inputs of the Kuz-Ram model. A specialized software package SPLIT Desktop was used to estimate the actual mean fragmentation by analyzing scaled images from the post blast muck pile. The Microsoft Excel regression analysis correlated the two intact rock properties with the blasting efficiency. The expected mean fragmentation and the actual fragmentation were then used to determine the blast performance, defined as the percentage ratio of the actual mean to the expected mean. The blast performance showed a good relationship with density (R2 = 0.81971), with performance of the blast reducing with an increase in density. The performance also dropped with increase in charge length. The blast performance and mass of charge/explosives per hole relationship showed a correlation of (R2 = 0.56195), but the results were disregarded. Lastly the volume of the blast had a direct relation to the blast performance (R2 = 0.80897) and it would be logical to state that, the two are directly proportional to each other.展开更多
基金the National Natural Science Foundation of China (No. 50974116)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (SZBF2011-6-B35) for their financial support
文摘Support crushing and water inrush when mining under an unconsolidated confined aquifer in the Qidong Coal Mine was prevented by roof pre-blasting. The mechanism and applicable conditions for this method have been studied. The results show that when an overburden structure that may cause support crushing and a water inrush accident exists the weakening of the primary key stratum, which thereby reduces its weighting step, roof pre-blasting is both feasible and effective. If the position of the primary key stratum can be moved upward to exceed 10 times the mining height the possibility of support crushing and water inrush disaster caused by key stratum compound breakage will be lowered. The overburden structure of the number 7121 working face was considered during the design of a technical proposal involving roof pre-blasting. After comprehensively analyzing the applicability of roof pre-blasting the resulting design prevented support crushing and water inrush disasters from happening at the number 7121 working face and laid a solid foundation for mining safely.
基金the Project of Abroad Researcher Foundation of Heilongjiang Province,No.LC07C17
文摘The development of the 6-layered cerebral neocortex is one of the most important events during nervous system development, and disturbances could result in various malformations, causing clinically intractable diseases, such as epilepsy and cerebral palsy. Pre-plate splitting is the first developmental step of the cortical plate formation. Without correct pre-plate splitting, normal cerebral cortex structures are disturbed. The Reelin-Dabl molecular pathway plays a critical role during cerebral cortex development, and deficiencies in this pathway result in failed pre-plate splitting and an inverted cortical plate. This paper summarizes findings involving Reelin and pre-plate splitting and further explores the precise role of Reelin during pre-plate splitting.
文摘With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting.
文摘A quantitative research was conducted at Tschudi mine, Tsumeb, Namibia with its main drive being to determine the influence that density and blast parameters has on the performance of a blast. The factors that are most vital to the fragmentation process are classified into three namely: explosive parameters, rock parameters and blast geometry. Rock fragmentation is dependent on two main factors, the rock properties which are uncontrollable and the blasting parameters that can be manipulated to give maximum efficiency. The selected variable quantities, density, charge length, volume of blast and mass of charge per hole were recorded after observation, determined via laboratory testing or calculated from their known equations. The main objective is to develop a model to predict blasting performance, and this will be achieved with the use of the Kuz-Ram model. The proposed equation related mean expected fragmentation size (calculated using the Kuz-Ram fragmentation model) to the actual fragmentation. Blasting parameters namely: burden, spacing, and charge quantity that are not included in this study were measured or calculated on site to facilitate the inputs of the Kuz-Ram model. A specialized software package SPLIT Desktop was used to estimate the actual mean fragmentation by analyzing scaled images from the post blast muck pile. The Microsoft Excel regression analysis correlated the two intact rock properties with the blasting efficiency. The expected mean fragmentation and the actual fragmentation were then used to determine the blast performance, defined as the percentage ratio of the actual mean to the expected mean. The blast performance showed a good relationship with density (R2 = 0.81971), with performance of the blast reducing with an increase in density. The performance also dropped with increase in charge length. The blast performance and mass of charge/explosives per hole relationship showed a correlation of (R2 = 0.56195), but the results were disregarded. Lastly the volume of the blast had a direct relation to the blast performance (R2 = 0.80897) and it would be logical to state that, the two are directly proportional to each other.