In this paper,the inner radius of univalency of hyperbolic domains by pre-Schwarzian derivative is studied,and some general formulas for the lower bound of the inner radius are established. As their applications,the l...In this paper,the inner radius of univalency of hyperbolic domains by pre-Schwarzian derivative is studied,and some general formulas for the lower bound of the inner radius are established. As their applications,the lower bounds of inner radiuses for angular domains and strongly starlike domains are obtained.展开更多
In this paper, we get a lower bound of inner radius of univalency of Schwarzian derivative by means of the norm of pre-Schwarzian derivative. Furthermore, we apply the theory of Universal Teichmuller Space to explain ...In this paper, we get a lower bound of inner radius of univalency of Schwarzian derivative by means of the norm of pre-Schwarzian derivative. Furthermore, we apply the theory of Universal Teichmuller Space to explain its geometric meaning which shows the relationship between the inner radius in Universal Teichmuller Space embedded by Schwarzian derivative and the norm defined in Universal Teichmuller Space embedded by pre-Schwarzian derivative.展开更多
根据[fv]=12-vzz2∈L,给出了魏寒柏"关于万有Teichmüller空间T1的分支"一文中定理2.1的简洁证明;构造了具体的解析函数fλ(z),使其当λ>0时:fλ∈L0,当λ<0时:fλ∈Lθ,从而简化了王哲"The Distance be-tween...根据[fv]=12-vzz2∈L,给出了魏寒柏"关于万有Teichmüller空间T1的分支"一文中定理2.1的简洁证明;构造了具体的解析函数fλ(z),使其当λ>0时:fλ∈L0,当λ<0时:fλ∈Lθ,从而简化了王哲"The Distance be-tween Different Component of the Universal Teichmüller Space"一文中定理2.2的证明.展开更多
基金This work was partially supported by the National Natural Science Foundation of China(Grant No.10571028).
文摘In this paper,the inner radius of univalency of hyperbolic domains by pre-Schwarzian derivative is studied,and some general formulas for the lower bound of the inner radius are established. As their applications,the lower bounds of inner radiuses for angular domains and strongly starlike domains are obtained.
基金Supported by China Postdoctoral Science Foundation funded project (No. 20080430571)Jiangxi Educa tional Bureau Foundation (No. G JJ08163)
文摘In this paper, we get a lower bound of inner radius of univalency of Schwarzian derivative by means of the norm of pre-Schwarzian derivative. Furthermore, we apply the theory of Universal Teichmuller Space to explain its geometric meaning which shows the relationship between the inner radius in Universal Teichmuller Space embedded by Schwarzian derivative and the norm defined in Universal Teichmuller Space embedded by pre-Schwarzian derivative.
文摘根据[fv]=12-vzz2∈L,给出了魏寒柏"关于万有Teichmüller空间T1的分支"一文中定理2.1的简洁证明;构造了具体的解析函数fλ(z),使其当λ>0时:fλ∈L0,当λ<0时:fλ∈Lθ,从而简化了王哲"The Distance be-tween Different Component of the Universal Teichmüller Space"一文中定理2.2的证明.