期刊文献+
共找到8,328篇文章
< 1 2 250 >
每页显示 20 50 100
Seismic performance evaluation of hybrid coupled shear wall system with shear and flexural fuse-type steel coupling beams
1
作者 Zahra Ramezandoust Abbas Tajaddini Panam Zarfam 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期691-712,共22页
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically... Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered. 展开更多
关键词 hybrid coupled shear wall steel fuse coupling beam shear and flexural fuse nonlinear dynamic analysis seismic performance
下载PDF
Resilient performance of self-centering hybrid rocking walls with curved interface under pseudo-static loading
2
作者 Su Xing Yan Shi +1 位作者 Sun Xianglei Wang Tao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期65-85,共21页
Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during ... Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW. 展开更多
关键词 self-centering hybrid rocking wall(SCRW) monolithic shear wall(SW) earthquake resilient performance(ERP) curved interface rocking center
下载PDF
Theory of Flexural Shear, Bending and Torsion for a Thin-Walled Beam of Open Section
3
作者 David W. A. Rees Abdelraouf M. Sami Alsheikh 《World Journal of Mechanics》 2024年第3期23-53,共31页
Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under trans... Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre. 展开更多
关键词 Thin wall Theory Cantilever Beam Open Channel Section Principal Axes Flexure Transverse shear TORSION shear Centre shear Flow WARPING Fixed-End Constraint
下载PDF
Lateral Performance for Wood-Frame Shear Walls–A Critical Review
4
作者 Wei Xu Ottavia Corbi +3 位作者 Seithati Mapesela Yue Chen Milan Gaff Haitao Li 《Journal of Renewable Materials》 SCIE EI 2023年第5期2143-2169,共27页
Wood is a green material in line with the sustainable development strategy.From the excellent performance of engineering wood products,modern wood structures represented by light wood structures have gained more devel... Wood is a green material in line with the sustainable development strategy.From the excellent performance of engineering wood products,modern wood structures represented by light wood structures have gained more development opportunities.As an indispensable part of light wood structure systems,the wood-frame shear wall plays a vital role in the bearing capacity and earthquake resistance of light wood structure systems.This paper is focused on a review of the lateral performance of wood-frame shear walls and classifies the influencing factors in relevant experimental research into three categories,including internal factors such as shear wall structure,external factors such as test scheme,and other factors of material production and test process.Finally,the research prospects in this field were introduced based on the summary of the research status.This work can be a reference for further research on the lateral performance of wood-frame shear walls. 展开更多
关键词 Light wood structure lateral performance shear wall basic structure influence factor
下载PDF
FREE VIBRATION ANALYSIS OF SHEAR WALLS WITH SHORT PIERS 被引量:1
5
作者 黄东升 刘世美 +2 位作者 华新钰 刘俊龙 艾军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期194-201,共8页
The equations of the lateral deflection curve of the short pier shear wall under a lateral concentrated load at any level are derived by employing a continuous approach. Lateral flexibility matrixes for the dynamic an... The equations of the lateral deflection curve of the short pier shear wall under a lateral concentrated load at any level are derived by employing a continuous approach. Lateral flexibility matrixes for the dynamic analysis are also obtained by repeatedly calculating the lateral unit load on the wall at each level where a lumped mass located. Dynamic analyses are implemented for short pier shear walls with different parameters, called the integrative coefficient and the pier strength coefficient related to the dimensions of walls. The influences of two coefficients on the dynamic performances of the structure are studied. Results indicate that with the increase of the integrative coefficient, the periods of top two modes apparently decrease but the other periods of higher frequency modes show little variation when the pier strength coefficient remains constant. Similarly, if the integrative coefficient is constant, the top two periods of the free vibration decrease with the increase of the integrative coefficient but the other periods of higher frequency modes show less variation. 展开更多
关键词 shear wall with short piers dynamic analysis integrative coefficient pier strength coefficient
下载PDF
Nonlinear Behavior of Reinforced Concrete Slit Shear Walls under Seismic Actions *
6
作者 戴航 陈忠范 +1 位作者 关国雄 张佑启 《Journal of Southeast University(English Edition)》 EI CAS 1998年第1期86-92,共7页
A reinforced concrete slit shear wall is a new breed of earthquake resistant structure recently proposed by the authors. In this paper, the seismic responses of the slit shear walls under the shake of earthquake exci... A reinforced concrete slit shear wall is a new breed of earthquake resistant structure recently proposed by the authors. In this paper, the seismic responses of the slit shear walls under the shake of earthquake excitation have been dealt with. Based on a simplified structural model, which is shown to have a sufficient accuracy for the real slit shear wall structure, the analysis focuses on the influence of nonlinear behavior of the connecting beams between the slits on the dynamic performance of the whole slit shear wall structure. It has been found that the yielding of connecting beams in a slit shear wall can provide significant improvement in reducing the structural responses, and by choosing an appropriate strength value for the connecting beams, it is possible to optimize the seismic response of the slit shear wall. 展开更多
关键词 seismic response slit shear wall reinforced concrete connecting beam
下载PDF
Shake-table testing of a self-centering precast reinforced concrete frame with shear walls 被引量:10
7
作者 Lu Xilin Yang Boya Zhao Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第2期221-233,共13页
The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls ... The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination ofunbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions. 展开更多
关键词 SELF-CENTERING shake-table test RC frame with shear walls PRECAST unbonded post-tensioning seismicperformance
下载PDF
Experimental and analytical study on seismic behavior of steel-concrete multienergy dissipation composite shear walls 被引量:5
8
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Qiao Qiyun Yu Chuanpeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期125-139,共15页
In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is p... In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique. 展开更多
关键词 steel reinforced concrete steel plate deep beam multi energy dissipation composite shear wall seismic behavior
下载PDF
Experimental studies on behavior of fully grouted reinforced-concrete masonry shear walls 被引量:3
9
作者 Zhao Yan Wang Fenglai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第4期743-757,共15页
An experimental study is conducted on fully grouted reinforced masonry shear walls (RMSWs) made from concrete blocks with a new configuration. Ten RMSWs are tested under reversed cyclic lateral load to investigate the... An experimental study is conducted on fully grouted reinforced masonry shear walls (RMSWs) made from concrete blocks with a new configuration. Ten RMSWs are tested under reversed cyclic lateral load to investigate the influence of different reinforcements and applied axial stress values on their seismic behavior. The results show that flexural strength increases with the applied axial stress, and shear strength dominated by diagonal cracking increases with both the amount of horizontal reinforcement and applied axial stress. Yield displacement, ductility, and energy dissipation capability can be improved substantially by increasing the amount of horizontal reinforcement. The critical parameters for the walls are derived from the experiment: displacement ductility values corresponding to 15% strength degradation of the walls reach up to 2.6 and 4.5 in the shear and flexure failure modes, respectively; stiffness values of flexure- and shear-dominated walls rapidly degrade to 17%–19% and 48%–57% of initial stiffness at 0.50 D<sub>max</sub> (displacement at peak load). The experiment suggests that RMSWs could be assigned a higher damping ratio (~14%) for collapse prevention design and a lower damping value (~7%) for a fully operational limit state or serviceability limit state. 展开更多
关键词 reinforced-concrete masonry shear wall shear strength DUCTILITY stiffness degradation energy dissipation equivalent viscous damping ratio
下载PDF
Post-fire cyclic behavior of reinforced concrete shear walls 被引量:5
10
作者 刘桂荣 宋玉普 曲福来 《Journal of Central South University》 SCIE EI CAS 2010年第5期1103-1108,共6页
The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyc... The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyclic loading.Prior to the cyclic test,three specimens were exposed to fire and two of them were also subjected to a constant axial load.Test results indicate that the ultimate load of the specimen with lower reinforcement ratio is reduced by 15.8%after exposure to elevated temperatures.While the reductions in the energy dissipation and initial stiffness are 59.2%and 51.8%,respectively,which are much higher than those in the ultimate load.However,this deterioration can be slowed down by properly increasing reinforcement due to the strength and stiffness recovery of steel bars after cooling.In addition,the combined action of elevated temperatures and axial load results in more energy dissipation than the action of fire exposure alone. 展开更多
关键词 shear wall reinforced concrete post-fire seismic behavior low cyclic loading
下载PDF
Research on seismic performance of shear walls with concrete filled steel tube columns and concealed steel trusses 被引量:3
11
作者 Cao Wanlin Zhang Jianwei +1 位作者 Dong Hongying Wang Min 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期535-546,共12页
In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a doubl... In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a double composite shear wall; the first composite being the use of three different force systems, CFT, steel truss and shear wall, and the second the use of two different materials, steel and concrete. Three 1/5 scaled experimental specimens: a traditional RC shear wall, a shear wall with CFT columns, and a shear wall with CFT columns and concealed steel trusses, were tested under cyclic loading and the seismic performance indices of the shear walls were comparatively analyzed. Based on the data from these experiments, a thorough elastic-plastic finite element analysis and parametric analysis of the new shear walls were carried out using ABAQUS software. The finite element results of deformation, stress distribution, and the evolution of cracks in each phase were compared with the experimental results and showed good agreement. A mechanical model was also established for calculating the load-carrying capacity of the new composite shear walls. The results show that this new type of shear wall has improved seismic performance over the other two types of shear wails tested. 展开更多
关键词 shear wall concrete filled steel tube (CFT) concealed steel truss seismic performance experimental research
下载PDF
AN EFFICIENT ASSESSMENT METHOD FOR INTELLIGENT DESIGN RESULTS OF SHEAR WALL STRUCTURE BASED ON MECHANICAL PERFORMANCE,MATERIAL CONSUMPTION,AND EMPIRICAL RULES
12
作者 覃思中 廖文杰 +1 位作者 林元庆 陆新征 《工程力学》 EI CSCD 北大核心 2023年第12期148-159,共12页
Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This... Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This study introduces an assessment method used in the intelligent design and optimization of shear wall structures that effectively combines mechanical analysis and formulaic encoding of empirical rules.First,the critical information about the structure was extracted through data structuring.Second,an empirical rule assessment method was developed based on the engineer's experience and design standards to complete a preliminary assessment and screening of the structure.Subsequently,an assessment method based on mechanical performance and material consumption was used to compare different structural schemes comprehensively.Finally,the assessment effectiveness was demonstrated using a typical case.Compared to traditional assessment methods,the proposed method is more comprehensive and significantly more efficient,promoting the intelligent transformation of structural design. 展开更多
关键词 shear wall structure structural assessment data structuring intelligent design structural optimization
下载PDF
Cracking Patterns of Shear Walls in Reinforced Concrete Structure due to Strong Earthquake Based on Mohr-Coulomb Criterion 被引量:2
13
作者 查支祥 刘西拉 +1 位作者 彭卫 许波 《Journal of Donghua University(English Edition)》 EI CAS 2015年第4期541-548,共8页
A primary goal of seismic design of buildings is to protect people's life safety during strong earthquakes. Fundamentally,to predict the survived space and estimate people escape intervals during structural collap... A primary goal of seismic design of buildings is to protect people's life safety during strong earthquakes. Fundamentally,to predict the survived space and estimate people escape intervals during structural collapse are very important,which requires to describe the failure process more detailedly not only for structural joints but also for slabs and shear walls. In the present paper,the details of Mohr-Coulomb failure criterion with tension-cutoff together with its expression in failure surface and local coordinate system of reinforced concrete( RC) shear wall are given firstly,and then several typical cracking patterns of RC shear wall,such as tension shear crack and compression shear crack, are analyzed based on Mohr-Coulomb failure criterion with tension-cutoff. 展开更多
关键词 cracking patterns Mohr-Coulomb criterion shear wall
下载PDF
Seismic performance evaluation of steel frame-steel plate shear walls system based on the capacity spectrum method 被引量:3
14
作者 Jian-hua SHAO Qiang GU Yong-kang SHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期322-329,共8页
This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the... This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the base shear force-roof displacement curve of structure is converted to the capacity spectrum of an equivalent single-degree-of-freedom (SDOF) system. The capacity spectrum method (CSM) is programmed by means of MATLABT.0 computer language. A dual lateral force resisting system of 10-story steel frame-steel plate shear walls (SPSW) is designed according to the corresponding China design codes. The base shear force-roof displacement curve of structure subjected to the monotonic increasing lateral inverse triangular load is obtained by applying the equivalent strip model to stimulate SPSW and by using the finite element analysis software SAP2000 to make Pushover analysis. The seismic performance of this dual system subjected to three different conditions, i.e. the 8-intensity frequently occurred earthquake, fortification earthquake and seldom occurred earthquake, is evaluated by CSM program. The excessive safety of steel frame-SPSW system designed according to the present China design codes is pointed out and a new design method is suggested. 展开更多
关键词 Steel frame-steel plate shear walls (SPSW) system Capacity spectrum method (CSM) Seismic demand spectrum Base shear force-roof displacement Seismic performance evaluation
下载PDF
Effect of fiber angle on LYP steel shear walls behavior 被引量:2
15
作者 Farzad Hatami Ali Ghamari Farshad Hatami 《Journal of Central South University》 SCIE EI CAS 2014年第2期768-774,共7页
Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher pr... Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher properties compared to SSW in both elastic and inelastic zones.It is also concluded that the addition of CFRP(carbon fiber reinforced polymers) enhances the seismic parameters of LSSW(stiffness,energy absorption,shear capacity,over strength values).Also,stress values applied to boundary frames are lower due to post buckling forces.The effect of fiber angle was also studied and presented as a mathematical equation. 展开更多
关键词 carbon fiber reinforced polymers fiber angle low yield point steel shear wall post buckling COMPOSITE
下载PDF
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams 被引量:1
16
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Zhang Jianwei Xu Fangfang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期609-624,共16页
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat... A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures. 展开更多
关键词 concrete filled steel tube (CFST) column steel plate (SP) deep beam composite shear wall seismic test calculation and analysis
下载PDF
Lateral load-carrying capacity analyses of composite shear walls with double steel plates and filled concrete with binding bars 被引量:1
17
作者 周德源 刘凌飞 朱立猛 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期2083-2091,共9页
A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were establish... A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results. 展开更多
关键词 composite shear wall double steel plate binding bar lateral load-carrying capacity nonlinear finite element analysis
下载PDF
Experimental investigation on shear strength deterioration at the interface between different rock types under cyclic loading
18
作者 Qiong Wu Zhiqi Liu +6 位作者 Huiming Tang Liangqing Wang Xiaoxue Huo Zhen Cui Shiyu Li Bo Zhang Zhiwei Lin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3063-3079,共17页
The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake... The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate. 展开更多
关键词 Discontinuities with different joint wall material(DDJM) Discontinuities with identical joint wall material(DIJM) Cyclic shear test shear strength deterioration Joint surface morphology shear displacement amplitude shear rate Normal stress
下载PDF
EXPERIMENTAL STUDY OF TENSILE CAPACITY OF CONCRETE IN RC SHEAR WALLS AFTER CRACKING
19
作者 陆勤 丁大钧 《Journal of Southeast University(English Edition)》 EI CAS 1992年第2期112-118,共7页
Through the test of 8 RC shear wall specimens and computer analysis ofstrains of steel bars with keyways in the specimens,the authors have studied the remains oftensile stress of concrete between cracks after concrete... Through the test of 8 RC shear wall specimens and computer analysis ofstrains of steel bars with keyways in the specimens,the authors have studied the remains oftensile stress of concrete between cracks after concrete cracking and put forward a formulato calculate coefficient Ψ,the ununiform distribution factor of steel strain.This coefficientcan be used to modify the calculated steel strain in cracked zone,so as to make the resultsof using finite clement method to analyze shear walls more accurate. 展开更多
关键词 shear wall CONCRETE cracking/tension STIFFENING AVERAGE strain FINITE element nonlinear analysis
下载PDF
Static inelastic analysis of RC shear walls
20
作者 陈勤 钱稼茹 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第1期94-99,共6页
A macro-model of a reinforced concrete (RC) shear wall is developed for static inelastic analysis.The model is composed of RC column elements and RC membrane elements.The column elements are used to model the boundary... A macro-model of a reinforced concrete (RC) shear wall is developed for static inelastic analysis.The model is composed of RC column elements and RC membrane elements.The column elements are used to model the boundary zone and the membrane elements are used to model the wall panel.Various types of constitutive relationships of concrete could be adopted for the two kinds of elements.To perform analysis,the wall is divided into layers along its height.Two adjacent layers are connected with a rigid beam.There are only three unknown displacement components for each layer.A method called single degree of freedom compensation is adopted to solve the peak value of the capacity curve.The post-peak stage analysis is performed using a forced iteration approach.The macro-model developed in the study and the complete process analysis methodology are verified by the experimental and static inelastic analytical results of four RC shear wall specimens. 展开更多
关键词 RC shear wall macro-model static inelastic analysis EXPERIMENT
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部