Graphene-based frameworks suffer from a low quantum capacitance due to graphene’s Dirac point at the Fermi level.This theoretical study investigated the effect structural defects,nitrogen and boron doping,and surface...Graphene-based frameworks suffer from a low quantum capacitance due to graphene’s Dirac point at the Fermi level.This theoretical study investigated the effect structural defects,nitrogen and boron doping,and surface epoxy/hydroxy groups have on the electronic structure and capacitance of graphene.Density functional theory calculations reveal that the lowest energy configurations for nitrogen or boron substitutional doping occur when the dopant atoms are segregated.This elucidates why the magnetic transition for nitrogen doping is experimentally only observed at higher doping levels.We also highlight that the lowest energy configuration for a single vacancy defect is magnetic.Joint density functional theory calculations show that the fixed band approximation becomes increasingly inaccurate for electrolytes with lower dielectric constants.The introduction of structural defects rather than nitrogen or boron substitutional doping,or the introduction of adatoms leads to the largest increase in density of states and capacitance around graphene’s Dirac point.However,the presence of adatoms or substitutional doping leads to a larger shift of the potential of zero charge away from graphene’s Dirac point.展开更多
Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer...Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.展开更多
In view of drastic possible changes in fuze environment tempera- ture,a kind of temperature autocompensated detecting circuit for the capaci- tance fuze is proposed.It provides a steady detected output when the envi- ...In view of drastic possible changes in fuze environment tempera- ture,a kind of temperature autocompensated detecting circuit for the capaci- tance fuze is proposed.It provides a steady detected output when the envi- ronment temperature varies from-50℃ to 65℃ and keeps a stable detecting sensitivity.Based on an analysis of the circuit,influence of the major param- eters of the oscillating circuit on the amplitude are explored.A few impor- tant controllable parameters affecting the circuit feature are found out.A parameter-control method is given in order to improve the circuit perfor- mance.展开更多
A distributed capacitance model for monolithic inductors is developed to predict the equivalently parasitical capacitances of the inductor.The ratio of the self-resonant frequency (f SR) of the differential-driven sym...A distributed capacitance model for monolithic inductors is developed to predict the equivalently parasitical capacitances of the inductor.The ratio of the self-resonant frequency (f SR) of the differential-driven symmetric inductor to the f SR of the single-ended driven inductor is firstly predicted and explained.Compared with a single-ended configuration,experimental data demonstrate that the differential inductor offers a 127% greater maximum quality factor and a broader range of operating frequencies.Two differential inductors with low parasitical capacitance are developed and validated.展开更多
For establishing the equation of the capacitive target detection accurately, the distributing characteristics of the charges on the bomb body with capacitance fuze were explored. Continuous charges were analyzed disp...For establishing the equation of the capacitive target detection accurately, the distributing characteristics of the charges on the bomb body with capacitance fuze were explored. Continuous charges were analyzed dispersively. Based on the Coulomb's law, the dynamic equilibrium equations of the inducing charges on the bomb body were set up. For the four cases of d 0/L (the ratio between the electrode distance and the bomb length), the curves of the charge's distribution were given. It was concluded that: ① the charge density decreases steadily from the end near the frontal electrode to the bomb tail; ② the declining rate of the density is governed by d 0/L , the larger the value of d 0/L ,the higher the declining rate, and vice versa.展开更多
For a detector in a capacitanee fuze working in an electrostatic field, the bomblength (effective length of the conductor part) is an important factor affecting the sensitivityof detection. For the two different kinds...For a detector in a capacitanee fuze working in an electrostatic field, the bomblength (effective length of the conductor part) is an important factor affecting the sensitivityof detection. For the two different kinds of detecting circuit models in general use (the frequency-sensitive and the amplitude-coupling ), mechanism of the effect of bomblength on the sensitvity of detection is analyzed. Through the analysis a conclusion in fullagreement with experimental results has been drawn, that is. the longer the bomb length,the higher the sensitivity, on the condition that the sizes and the sites of the detecting electrodes and bomb diameter remain unchanged.展开更多
The finite element method is first introduced into the design process of detecting electrodes of three electrode capacitance fuze, the mutual capacitance of the fuze and target is calculated by the finite element met...The finite element method is first introduced into the design process of detecting electrodes of three electrode capacitance fuze, the mutual capacitance of the fuze and target is calculated by the finite element method, which provides the parameters for simulation circuit and design of detecting electrode. The finite element method pierces the traditional method of designing detecting electrode-design, test and adjustment. The system capacitance can be calculated accurately and the performance can be predicted in the design period of the detecting electrode, which saves a lot of research fee. The capacitances of a mortar shell fuze above ground 2 m and lower are given. After putting the computing data into simulating circuit, the demodulation voltage can be obtained, its changing trend is in agreement with the tested result.展开更多
A nanocomposite of nickel oxide/carbon nanotubes was prepared through a simple chemical precipitation followed by thermal annealing. The electrochemical capacitance of this electrode material was studied. When the mas...A nanocomposite of nickel oxide/carbon nanotubes was prepared through a simple chemical precipitation followed by thermal annealing. The electrochemical capacitance of this electrode material was studied. When the mass fraction of CNTs (carbon nanotubes) in NiO/CNT composites increases, the electrical resistivity of nanocomposites decreases and becomes similar to that of pure CNTs when it reaches 30%. The specific surface area of composites increases with increasing CNT mass fraction and the specific capacitance reaches 160 F/g under 10 mA/g discharge current density at CNT mass fraction of 10%.展开更多
Periodic arrays of negative capacitance shunted piezoelectric patches are employed to control the band gaps of phononic beams. The location and the extent of induced band gap depend on the mismatch in impedance genera...Periodic arrays of negative capacitance shunted piezoelectric patches are employed to control the band gaps of phononic beams. The location and the extent of induced band gap depend on the mismatch in impedance generated by each patch. The total impedance mismatch is determined by the added mass and stiffness of each patch as well as the shunting electrical impedance. Therefore, the band gap of the shunted phononic beam can be actively tuned by appropriately selecting the value of negative capacitance. The control of the band gap of phononic beam with negative capacitive shunt is demonstrated numerically by employing transfer matrix method. The result reveals that using negative capacitive shunt to tune the band gap is effective.展开更多
The morphology of etched aluminum foil was observed using scanning electron microscopy, which led to the establishment of a cylindrical model and two merged models, considering the fixed weight loss of etching. The ma...The morphology of etched aluminum foil was observed using scanning electron microscopy, which led to the establishment of a cylindrical model and two merged models, considering the fixed weight loss of etching. The maximum of specific capacitance and the cor- responding optimum values for tunnel sizes at various anodization voltages were predicted. The increased size distribution and taper of tun- nels were demonstrated to decrease the specific capacitance, whereas the addition of polymeric additive into the ttmnel widening solution was demonstrated to increase the capacitance. The formation of merged tunnels on the etched aluminum surface, irrespective of the presence of row-merged tunnels or cluster-merged tunnels, resulted in a dramatic decrease in the specific capacitance. It is concluded that, enhancing the uniformity of turmel size and distribution and avoiding the formation of merged tunnels are the effective approach to achieving the higher capacitance for the tunnel etched and formed aluminum foil.展开更多
The cobalt sulfide/graphene oxide(CoS/GO) nanocomposite was synthesized by a simple hydrothermal reaction.The products as-synthesized were characterized by XRD,SEM,TEM,BET-BJH and TG.The electrochemical property and...The cobalt sulfide/graphene oxide(CoS/GO) nanocomposite was synthesized by a simple hydrothermal reaction.The products as-synthesized were characterized by XRD,SEM,TEM,BET-BJH and TG.The electrochemical property and impedance of the CoS/GO nanocomposite were studied by cyclic voltammetry and EIS analysis,respectively.The results show that the presence of the GO enhances the electrode conductivity,and then improves the capacitance property of the CoS/GO nanocomposite.The galvanostatic charge/discharge measurement results show that the CoS/GO nanocomposite has a high specific capacitance(550Fg^-1) and long cycle life(over 1 000 cycles).展开更多
Functional carbonaceous materials for supercapacitors(SCs)without using acid for post-treatment remain a substantial challenge.In this paper,we present a less harmful strategy for preparing three-dimensional(3D)N,O-co...Functional carbonaceous materials for supercapacitors(SCs)without using acid for post-treatment remain a substantial challenge.In this paper,we present a less harmful strategy for preparing three-dimensional(3D)N,O-codoped egg-box-like carbons(EBCs).The as-prepared EBCs with opened pores provide plentiful channels for ion fast transport,ensure the e ective contact of EBCs electrodes and electrolytes,and enhance the electron conduction.The nitrogen and oxygen atoms doped in EBCs improve the surface wettability of EBC electrodes and provide the pseudocapacitance.Consequently,the EBCs display a prominent areal capacitance of 39.8μF cm-2(340 F g-1)at 0.106 m A cm-2 in 6 M KOH electrolyte.The EBC-based symmetric SC manifests a high areal capacitance to 27.6μF cm-2(236 F g-1)at 0.1075 m A cm-2,a good rate capability of 18.8μF cm-2(160 F g-1)at 215 m A cm-2 and a long-term cycle stability with only 1.9%decay after 50,000 cycles in aqueous electrolyte.Impressively,even in all-solid-state SC,EBC electrode shows a high areal capacitance of 25.0μF cm-2(214 F g-1)and energy density of 0.0233 m Wh cm-2.This work provides an acid-free process to prepare electrode materials from industrial by-products for advanced energy storage devices.展开更多
Here we report a strategy to enhance the energy density of supercapacitors by increasing the utilization rate of the specific surface area(SSA)via wettability improvement. The nonporous gold(NPG) film is used as the e...Here we report a strategy to enhance the energy density of supercapacitors by increasing the utilization rate of the specific surface area(SSA)via wettability improvement. The nonporous gold(NPG) film is used as the electrodes and the ionic liquid [EMIM]BF4 is the electrolyte. When the electrode is coated by paraffin, an increase of the contact angle leads to a remarkable reduction of the specific capacitance. While when acetonitrile is added into the electrolyte, the contact angle is decreased and the utilization rate of SSA is improved, which results in an increase of the specific capacitance. The addition of isopropyl acetate into the electrolyte leads to a further increase of the specific capacitance. To generalize the role of the wettability in improving the energy density, a carbon-based electrode is evaluated in the solution of potassium hydroxide. An addition of propyl alcohol into the potassium hydroxide solution leads to an increase of the specific capacitance, as well as a long-term stability of the supercapacitor. The role of conductivity in this study is excluded by designing experiments. This paper highlights the significance of wettability in determining the specific capacitance, showing an alternative to improve the energy density of supercapacitors.展开更多
A differential capacitance detection circuit aiming at detection of rotating angle in a novel levitation structure is presented. To ensure the low non-linearity and high resolution, noise analysis and non-linearity si...A differential capacitance detection circuit aiming at detection of rotating angle in a novel levitation structure is presented. To ensure the low non-linearity and high resolution, noise analysis and non-linearity simulation are conducted. In the capacitance interface, an integral charge amplifier is adopted as a front end amplifier to reduce the parasitic capacitance caused by connecting wire. For the novel differential capacitance bridge with a coupling capacitor, the noise floor and non-linearity of the detection circuit are analyzed, and the results show that the detecting circuit is capable of realizing angle detection with high angular resolution and relative low non-linearity. With a specially designed printed circuit board, the circuit is simulated by PSpice. The practical experiment shows that the detection board can achieve angular resolution as high as 0.04° with a non-linearity error 2.3%.展开更多
A detailed theoretical analysis of determining the sum of flexoelectric coefficients in nematic liquid crystals using the capacitance method is given. In the strong anchoring parallel aligned nematic (PAN) and hybri...A detailed theoretical analysis of determining the sum of flexoelectric coefficients in nematic liquid crystals using the capacitance method is given. In the strong anchoring parallel aligned nematic (PAN) and hybrid aligned nematic (HAN) cells, the dependences of the capacitance on the sum of flexoelectric coefficients and the applied voltage are obtained by numerical simulations, and the distributions of the director and the electric potential for different applied voltages and flexoelectric coefficients are also given. Based on this theoretical analysis, we propose an experimental design for measuring the capacitance of a liquid crystal cell using the improved precision LCR meter E4980A (Agilent). Through comparing the experimental data with the simulated results, the sum of flexoeletric coefficients can be determined.展开更多
Interdigitated finger capacitance of a continuous-wave terahertz photomixer is calculated using the finite element method.For the frequently used electrode width(0.2 μm) and gap width(1.8 μm),the finger capacita...Interdigitated finger capacitance of a continuous-wave terahertz photomixer is calculated using the finite element method.For the frequently used electrode width(0.2 μm) and gap width(1.8 μm),the finger capacitance increases quasi-quadratically with the number of electrodes increasing.The quasi-quadratic dependence can be explained by a sequence of lumped capacitors connected in parallel.For a photomixer composed of 10 electrodes and 9 photoconductive gaps,the finger capacitance increases as the gap width increases at a small electrode width,and follows the reverse trend at a large electrode width.For a constant electrode width,the finger capacitance first decreases and then slightly increases as the gap broadens until the smallest finger capacitance is formed.We also investigate the finger capacitances at different electrode and gap configurations with the 8 μm × 8 μm photomixer commonly used in previous studies.These calculations lead to a better understanding of the finger capacitance affected by the finger parameters,and should lead to terahertz photomixer optimization.展开更多
The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capaci...The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capacitance proximity detector is discussed, and the detecting sensitivity of the coupling capacitance detector is analyzed theoretically. Then the sensitivity engineering model, which can reflect the main parameters relationship of the detecting circuit is set up based on the foregoing analyses. It is concluded that: ① the sensitivity is mainly correlative with some parameters including the voltage transmission factor of the demodulator, the oscillating voltage amplitude and the amplitude variation constant of the oscillator; ② the sensitivity is also influenced by the areas of electrodes and the distance between electrodes of the detector.展开更多
Perturbation method of boundary geometry(PMOBG) used in Lapiacian problems is dealt with and the three--term perturbation expression of distributed capacitance of a coaxial line with perturbed walls is obtained. As an...Perturbation method of boundary geometry(PMOBG) used in Lapiacian problems is dealt with and the three--term perturbation expression of distributed capacitance of a coaxial line with perturbed walls is obtained. As an example,four-order expression of distributed capacitance of a elliptic coaxial line with small eccentricity is given.展开更多
Ti3C2Tx,a novel two-dimensional layer material,is widely used as electrode materials of supercapacitor due to its good metal conductivity,redox reaction active surface,and so on.However,there are many challenges to be...Ti3C2Tx,a novel two-dimensional layer material,is widely used as electrode materials of supercapacitor due to its good metal conductivity,redox reaction active surface,and so on.However,there are many challenges to be addressed which impede Ti3C2Tx obtaining the ideal specific capacitance,such as restacking,re-crushing,and oxidation of titanium.Recently,many advances have been proposed to enhance capacitance performance of Ti3C2Tx.In this review,recent strategies for improving specific capacitance are summarized and compared,for example,film formation,surface modification,and composite method.Furthermore,in order to comprehend the mechanism of those efforts,this review analyzes the energy storage performance in different electrolytes and influencing factors.This review is expected to predict redouble research direction of Ti3C2Tx materials in supercapacitors.展开更多
To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overc...To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overcomes the influence of the pipe wall. The data collection system is improved by using high performance IC (integrated circuit). Static tests of bubble flow, stratified flow and annular flow regime are carried out. Measurements are taken on bubble flow, stratified flow and slug flow. Results show that the new ECT system performs well on void fraction measurement of bubble flow and stratified flow, but the error of measurement for slug flow is more than 10%.展开更多
基金supported partially by JST SICORP(Grant No.JPMJSC2112)JST Adaptable and Seamless Technology Transfer Program through Target-driven R&D(A-STEP)(Grant No.JPMJTR22T6),and JSPS KAKENHI(Grant No.22K14757)+1 种基金Calculations were performed using the U.K.National Supercomputing Facility ARCHER2(http://www.archer2.ac.uk)via our membership of the U.K.’s HEC Materials Chemistry Consortium,which is funded by the EPSRC(Grant Nos.EP/L000202 and EP/R029431)the Molecular Modelling Hub for computational resources,MMM Hub,which is partially funded by EPSRC(Grant No.EP/P020194/1).This research has also utilized Queen Mary’s Apocrita HPC facility,supported by QMUL Research-IT.
文摘Graphene-based frameworks suffer from a low quantum capacitance due to graphene’s Dirac point at the Fermi level.This theoretical study investigated the effect structural defects,nitrogen and boron doping,and surface epoxy/hydroxy groups have on the electronic structure and capacitance of graphene.Density functional theory calculations reveal that the lowest energy configurations for nitrogen or boron substitutional doping occur when the dopant atoms are segregated.This elucidates why the magnetic transition for nitrogen doping is experimentally only observed at higher doping levels.We also highlight that the lowest energy configuration for a single vacancy defect is magnetic.Joint density functional theory calculations show that the fixed band approximation becomes increasingly inaccurate for electrolytes with lower dielectric constants.The introduction of structural defects rather than nitrogen or boron substitutional doping,or the introduction of adatoms leads to the largest increase in density of states and capacitance around graphene’s Dirac point.However,the presence of adatoms or substitutional doping leads to a larger shift of the potential of zero charge away from graphene’s Dirac point.
基金supported by the Shenzhen Science and Technology Program(JCYJ20230808105111022,JCYJ20220818095806013)Natural Science Foundation of Guangdong(2023A1515012267)+1 种基金the National Natural Science Foundation of China(22178223)the Royal Society/NSFC cost share program(IEC\NSFC\223372).
文摘Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.
文摘In view of drastic possible changes in fuze environment tempera- ture,a kind of temperature autocompensated detecting circuit for the capaci- tance fuze is proposed.It provides a steady detected output when the envi- ronment temperature varies from-50℃ to 65℃ and keeps a stable detecting sensitivity.Based on an analysis of the circuit,influence of the major param- eters of the oscillating circuit on the amplitude are explored.A few impor- tant controllable parameters affecting the circuit feature are found out.A parameter-control method is given in order to improve the circuit perfor- mance.
文摘A distributed capacitance model for monolithic inductors is developed to predict the equivalently parasitical capacitances of the inductor.The ratio of the self-resonant frequency (f SR) of the differential-driven symmetric inductor to the f SR of the single-ended driven inductor is firstly predicted and explained.Compared with a single-ended configuration,experimental data demonstrate that the differential inductor offers a 127% greater maximum quality factor and a broader range of operating frequencies.Two differential inductors with low parasitical capacitance are developed and validated.
文摘For establishing the equation of the capacitive target detection accurately, the distributing characteristics of the charges on the bomb body with capacitance fuze were explored. Continuous charges were analyzed dispersively. Based on the Coulomb's law, the dynamic equilibrium equations of the inducing charges on the bomb body were set up. For the four cases of d 0/L (the ratio between the electrode distance and the bomb length), the curves of the charge's distribution were given. It was concluded that: ① the charge density decreases steadily from the end near the frontal electrode to the bomb tail; ② the declining rate of the density is governed by d 0/L , the larger the value of d 0/L ,the higher the declining rate, and vice versa.
文摘For a detector in a capacitanee fuze working in an electrostatic field, the bomblength (effective length of the conductor part) is an important factor affecting the sensitivityof detection. For the two different kinds of detecting circuit models in general use (the frequency-sensitive and the amplitude-coupling ), mechanism of the effect of bomblength on the sensitvity of detection is analyzed. Through the analysis a conclusion in fullagreement with experimental results has been drawn, that is. the longer the bomb length,the higher the sensitivity, on the condition that the sizes and the sites of the detecting electrodes and bomb diameter remain unchanged.
文摘The finite element method is first introduced into the design process of detecting electrodes of three electrode capacitance fuze, the mutual capacitance of the fuze and target is calculated by the finite element method, which provides the parameters for simulation circuit and design of detecting electrode. The finite element method pierces the traditional method of designing detecting electrode-design, test and adjustment. The system capacitance can be calculated accurately and the performance can be predicted in the design period of the detecting electrode, which saves a lot of research fee. The capacitances of a mortar shell fuze above ground 2 m and lower are given. After putting the computing data into simulating circuit, the demodulation voltage can be obtained, its changing trend is in agreement with the tested result.
基金This project was financially supported by the National Natural Science Foundation of China under grant No.50307009the Ministry of Science and Technology of South Korea through National Research Lab Program.
文摘A nanocomposite of nickel oxide/carbon nanotubes was prepared through a simple chemical precipitation followed by thermal annealing. The electrochemical capacitance of this electrode material was studied. When the mass fraction of CNTs (carbon nanotubes) in NiO/CNT composites increases, the electrical resistivity of nanocomposites decreases and becomes similar to that of pure CNTs when it reaches 30%. The specific surface area of composites increases with increasing CNT mass fraction and the specific capacitance reaches 160 F/g under 10 mA/g discharge current density at CNT mass fraction of 10%.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50875255 and 10902123)
文摘Periodic arrays of negative capacitance shunted piezoelectric patches are employed to control the band gaps of phononic beams. The location and the extent of induced band gap depend on the mismatch in impedance generated by each patch. The total impedance mismatch is determined by the added mass and stiffness of each patch as well as the shunting electrical impedance. Therefore, the band gap of the shunted phononic beam can be actively tuned by appropriately selecting the value of negative capacitance. The control of the band gap of phononic beam with negative capacitive shunt is demonstrated numerically by employing transfer matrix method. The result reveals that using negative capacitive shunt to tune the band gap is effective.
基金financially supported by the Research Project of Guangxi Zhuang Autonomous Region,China(Nos.1346011-7 and 1298019-11)the financial support from the Guangxi Hezhou Guidong Electronics Technology Co.,Ltd
文摘The morphology of etched aluminum foil was observed using scanning electron microscopy, which led to the establishment of a cylindrical model and two merged models, considering the fixed weight loss of etching. The maximum of specific capacitance and the cor- responding optimum values for tunnel sizes at various anodization voltages were predicted. The increased size distribution and taper of tun- nels were demonstrated to decrease the specific capacitance, whereas the addition of polymeric additive into the ttmnel widening solution was demonstrated to increase the capacitance. The formation of merged tunnels on the etched aluminum surface, irrespective of the presence of row-merged tunnels or cluster-merged tunnels, resulted in a dramatic decrease in the specific capacitance. It is concluded that, enhancing the uniformity of turmel size and distribution and avoiding the formation of merged tunnels are the effective approach to achieving the higher capacitance for the tunnel etched and formed aluminum foil.
基金Funded by the National Natural Science Foundation of China(Nos.21275006,21471001,20905001,21071002,21175001,21271004)
文摘The cobalt sulfide/graphene oxide(CoS/GO) nanocomposite was synthesized by a simple hydrothermal reaction.The products as-synthesized were characterized by XRD,SEM,TEM,BET-BJH and TG.The electrochemical property and impedance of the CoS/GO nanocomposite were studied by cyclic voltammetry and EIS analysis,respectively.The results show that the presence of the GO enhances the electrode conductivity,and then improves the capacitance property of the CoS/GO nanocomposite.The galvanostatic charge/discharge measurement results show that the CoS/GO nanocomposite has a high specific capacitance(550Fg^-1) and long cycle life(over 1 000 cycles).
基金the funding support of this work by the National Natural Science Foundation of China(Nos.U1710116,U1508201 and 51872005).
文摘Functional carbonaceous materials for supercapacitors(SCs)without using acid for post-treatment remain a substantial challenge.In this paper,we present a less harmful strategy for preparing three-dimensional(3D)N,O-codoped egg-box-like carbons(EBCs).The as-prepared EBCs with opened pores provide plentiful channels for ion fast transport,ensure the e ective contact of EBCs electrodes and electrolytes,and enhance the electron conduction.The nitrogen and oxygen atoms doped in EBCs improve the surface wettability of EBC electrodes and provide the pseudocapacitance.Consequently,the EBCs display a prominent areal capacitance of 39.8μF cm-2(340 F g-1)at 0.106 m A cm-2 in 6 M KOH electrolyte.The EBC-based symmetric SC manifests a high areal capacitance to 27.6μF cm-2(236 F g-1)at 0.1075 m A cm-2,a good rate capability of 18.8μF cm-2(160 F g-1)at 215 m A cm-2 and a long-term cycle stability with only 1.9%decay after 50,000 cycles in aqueous electrolyte.Impressively,even in all-solid-state SC,EBC electrode shows a high areal capacitance of 25.0μF cm-2(214 F g-1)and energy density of 0.0233 m Wh cm-2.This work provides an acid-free process to prepare electrode materials from industrial by-products for advanced energy storage devices.
基金financial support from National Natural Science Foundation of China(91534123,91834303,U1862117)supported by the State Key Laboratory of Multiphase Complex Systems(MPCS-2017-A-01)support by State key laboratory of Multiphase Complex Systems(MPCS)Facility Upgradation Program
文摘Here we report a strategy to enhance the energy density of supercapacitors by increasing the utilization rate of the specific surface area(SSA)via wettability improvement. The nonporous gold(NPG) film is used as the electrodes and the ionic liquid [EMIM]BF4 is the electrolyte. When the electrode is coated by paraffin, an increase of the contact angle leads to a remarkable reduction of the specific capacitance. While when acetonitrile is added into the electrolyte, the contact angle is decreased and the utilization rate of SSA is improved, which results in an increase of the specific capacitance. The addition of isopropyl acetate into the electrolyte leads to a further increase of the specific capacitance. To generalize the role of the wettability in improving the energy density, a carbon-based electrode is evaluated in the solution of potassium hydroxide. An addition of propyl alcohol into the potassium hydroxide solution leads to an increase of the specific capacitance, as well as a long-term stability of the supercapacitor. The role of conductivity in this study is excluded by designing experiments. This paper highlights the significance of wettability in determining the specific capacitance, showing an alternative to improve the energy density of supercapacitors.
基金Foundation item: National Natural Science Foundation of China (60402003) The Key National Basic Research and Development Program of China (2002AA745120)
文摘A differential capacitance detection circuit aiming at detection of rotating angle in a novel levitation structure is presented. To ensure the low non-linearity and high resolution, noise analysis and non-linearity simulation are conducted. In the capacitance interface, an integral charge amplifier is adopted as a front end amplifier to reduce the parasitic capacitance caused by connecting wire. For the novel differential capacitance bridge with a coupling capacitor, the noise floor and non-linearity of the detection circuit are analyzed, and the results show that the detecting circuit is capable of realizing angle detection with high angular resolution and relative low non-linearity. With a specially designed printed circuit board, the circuit is simulated by PSpice. The practical experiment shows that the detection board can achieve angular resolution as high as 0.04° with a non-linearity error 2.3%.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274088,11374087,and 11304074)the Natural Science Foundation of Hebei Province,China(Grant No.A2014202123)+2 种基金the Research Project of Hebei Education Department,China(Grant Nos.Z2012061 and QN2014130)the Science and Technology Plan Project of Hebei Province,China(Grant No.134576260)the Key Subject Construction Project of Hebei Province University,China
文摘A detailed theoretical analysis of determining the sum of flexoelectric coefficients in nematic liquid crystals using the capacitance method is given. In the strong anchoring parallel aligned nematic (PAN) and hybrid aligned nematic (HAN) cells, the dependences of the capacitance on the sum of flexoelectric coefficients and the applied voltage are obtained by numerical simulations, and the distributions of the director and the electric potential for different applied voltages and flexoelectric coefficients are also given. Based on this theoretical analysis, we propose an experimental design for measuring the capacitance of a liquid crystal cell using the improved precision LCR meter E4980A (Agilent). Through comparing the experimental data with the simulated results, the sum of flexoeletric coefficients can be determined.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AAxxx2008A)Hundred Talent Program of the Chinese Academy of Sciences (Grant No. J08-029)the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences (Grant No. YYYJ-1123-4)
文摘Interdigitated finger capacitance of a continuous-wave terahertz photomixer is calculated using the finite element method.For the frequently used electrode width(0.2 μm) and gap width(1.8 μm),the finger capacitance increases quasi-quadratically with the number of electrodes increasing.The quasi-quadratic dependence can be explained by a sequence of lumped capacitors connected in parallel.For a photomixer composed of 10 electrodes and 9 photoconductive gaps,the finger capacitance increases as the gap width increases at a small electrode width,and follows the reverse trend at a large electrode width.For a constant electrode width,the finger capacitance first decreases and then slightly increases as the gap broadens until the smallest finger capacitance is formed.We also investigate the finger capacitances at different electrode and gap configurations with the 8 μm × 8 μm photomixer commonly used in previous studies.These calculations lead to a better understanding of the finger capacitance affected by the finger parameters,and should lead to terahertz photomixer optimization.
文摘The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capacitance proximity detector is discussed, and the detecting sensitivity of the coupling capacitance detector is analyzed theoretically. Then the sensitivity engineering model, which can reflect the main parameters relationship of the detecting circuit is set up based on the foregoing analyses. It is concluded that: ① the sensitivity is mainly correlative with some parameters including the voltage transmission factor of the demodulator, the oscillating voltage amplitude and the amplitude variation constant of the oscillator; ② the sensitivity is also influenced by the areas of electrodes and the distance between electrodes of the detector.
基金the Open Foundation of State Key Laboratory of Advanced Technology for Materials Synthersis Processing
文摘Perturbation method of boundary geometry(PMOBG) used in Lapiacian problems is dealt with and the three--term perturbation expression of distributed capacitance of a coaxial line with perturbed walls is obtained. As an example,four-order expression of distributed capacitance of a elliptic coaxial line with small eccentricity is given.
基金National Natural Science Foundation of China with Grant No.21905304Natural Science Foundation of Shandong Province(No.ZR2019BEM031)the Fundamental Research Funds for the Central Universities(Nos.18CX02158A and 19CX05001A).
文摘Ti3C2Tx,a novel two-dimensional layer material,is widely used as electrode materials of supercapacitor due to its good metal conductivity,redox reaction active surface,and so on.However,there are many challenges to be addressed which impede Ti3C2Tx obtaining the ideal specific capacitance,such as restacking,re-crushing,and oxidation of titanium.Recently,many advances have been proposed to enhance capacitance performance of Ti3C2Tx.In this review,recent strategies for improving specific capacitance are summarized and compared,for example,film formation,surface modification,and composite method.Furthermore,in order to comprehend the mechanism of those efforts,this review analyzes the energy storage performance in different electrolytes and influencing factors.This review is expected to predict redouble research direction of Ti3C2Tx materials in supercapacitors.
基金the National High Technology Research and Development Program of China (863 Program) (No. 2002AA616050).
文摘To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overcomes the influence of the pipe wall. The data collection system is improved by using high performance IC (integrated circuit). Static tests of bubble flow, stratified flow and annular flow regime are carried out. Measurements are taken on bubble flow, stratified flow and slug flow. Results show that the new ECT system performs well on void fraction measurement of bubble flow and stratified flow, but the error of measurement for slug flow is more than 10%.