In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy...In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.展开更多
Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering th...Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering the heterogeneity of the rock,microscopic thermodynamic properties,and shockwave time domain waveforms,based on the shockwave model,digital imaging technology and the discrete element method,the cyclic loading numerical simulations of HERF is achieved by coupling electrical,thermal,and solid mechanics under different formation temperatures,confining pressure,initial peak voltage,electrode bit diameter,and loading times.Meanwhile,the HERF discharge system is conducive to the laboratory experiments with various electrical parameters and the resulting broken pits are numerically reconstructed to obtain the geometric parameters.The results show that,the completely broken area consists of powdery rock debris.In the pre-broken zone,the mineral cementation of the rock determines the transition of type CⅠcracks to type CⅡand type CⅢcracks.Furthermore,the peak pressure of the shockwave increased with initial peak voltage but decreased with electrode bit diameter,while the wave front time reduced.Moreover,increasing well depth,formation temperature and confining pressure augment and inhibit HERF,but once confining pressure surpassed the threshold of 60 MPa for 152.40,215.90,and 228.60 mm electrode bits,and 40 MPa for 309.88 mm electrode bits,HERF is promoted.Additionally,for the same kind of rock,the volume and width of the broken pit increase with higher initial peak voltage and rock fissures will promote HERF.Eventually,the electrode drill bit with a 215.90 mm diameter is more suitable for drilling pink granite.This research contributes to a better microscopic understanding of HERF and provides valuable insights for electrode bit selection,as well as the optimization of circuit parameters for HERF technology.展开更多
An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of th...An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of the fragments formed.This study investigated the fragmentation performance of a new high-carbon silicon-manganese(HCSiMn)steel cylindrical shell through fragment recovery experiments.Compared with the conventional 45Cr steel shell,the number of small mass fragments produced by the HCSi Mn steel shell was significantly increased with a scale parameter of 0.57 g fitted by the Weibull distribution model.The fragmentation process of the HCSi Mn shell exhibited more brittle tensile fracture characteristics,with the microcrack damage zone on the outer surface being the direct cause of its high fragmentation.On the one hand,the doping of alloy elements resulted in grain refinement by forming metallographic structure of tempered sorbite,so that microscopic intergranular fracture reduces the characteristic mass of the fragments;on the other hand,the distribution of alloy carbides can exert a"pinning"effect on the substrate grains,causing more initial cracks to form and propagate along the brittle carbides,further improving the shell fragmentation.Although the killing power radius for light armored vehicles was slightly reduced by about 6%,the dense killing radius of HCSiMn steel projectile against personnel can be significantly increased by about 26%based on theoretical assessment.These results provided an experimental basis for high fragmentation warhead design,and to some extent,revealed the correlation mechanism between metallographic structure and shell fragmentation.展开更多
This study comprehensively assessed long-term vegetation changes and forest fragmentation dynamics in the Himalayan temperate region of Pakistan from 1989 to 2019.Four satellite images,including Landsat-5 TM and Lands...This study comprehensively assessed long-term vegetation changes and forest fragmentation dynamics in the Himalayan temperate region of Pakistan from 1989 to 2019.Four satellite images,including Landsat-5 TM and Landsat-8 Operational Land Imager(OLI),were chosen for subsequent assessments in October 1989,2001,2011 and 2019.The classified maps of 1989,2001,2011 and 2019 were created using the maximum likelihood classifier.Post-classification comparison showed an overall accuracy of 82.5%and a Kappa coefficient of 0.79 for the 2019 map.Results revealed a drastic decrease in closed-canopy and open-canopy forests by 117.4 and 271.6 km^(2),respectively,and an increase in agriculture/farm cultivation by 1512.8 km^(2).The two-way ANOVA test showed statistically significant differences in the area of various cover classes.Forest fragmentation was evaluated using the Landscape Fragmentation Tool(LFT v2.0)between 1989 and 2019.The large forest core(>2.00 km^(2))decreased from 149.4 to 296.7 km^(2),and a similar pattern was observed in medium forest core(1.00-2.00 km^(2))forests.On the contrary,the small core(<1.00 km^(2))forest increased from 124.8 to 145.3 km^(2) in 2019.The perforation area increased by 296.9 km^(2),and the edge effect decreased from 458.9 to 431.7 km^(2).The frequency of patches also increased by 119.1 km^(2).The closed and open canopy classes showed a decreasing trend with an annual rate of 0.58%and 1.35%,respectively.The broad implications of these findings can be seen in the studied region as well as other global ecological areas.They serve as an imperative baseline for afforestation and reforestation operations,highlighting the urgent need for efficient management,conservation,and restoration efforts.Based on these findings,sustainable land-use policies may be put into place that support local livelihoods,protect ecosystem services,and conserve biodiversity.展开更多
Transfer RNA-derived small RNAs(tsRNAs)have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells.However,it is unknown whether tsRNAs also regulate...Transfer RNA-derived small RNAs(tsRNAs)have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells.However,it is unknown whether tsRNAs also regulate embryo hatching.In this study,we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA(miRNA)cargo of preimplantation embryonic extracellular vesicles(EVs)influences embryo development.We thus profiled the tsRNA cargo of EVs secreted by blastocysts and non-blastocysts.The majority of tsRNAs was identified as tRNA halves originating from the 5'ends of tRNAs.Among the 148 differentially expressed tsRNAs,the 19 nt tRNA fragment(tRF)tDR-14:32-Glu-CTC-1 was found to be significantly up-regulated in EVs derived from non-blastocysts.RT-qPCR assays confirmed its significant up-regulation in non-blastocyst embryos and their conditioned medium compared to the blastocyst group(P<0.05).Inhibition of tDR-14:32-Glu-CTC-1 by supplementing antagomirs to the conditioned medium improved embryo hatching(P<0.05).Transcriptomic analysis of embryos treated with tDR-14:32-Glu-CTC-1 antagomirs further showed differential expression of genes that are associated with embryo hatching and implantation.In summary,tDR-14:32-Glu-CTC-1 is up-regulated in non-blastocyst embryos and their secretions,and inhibition of tDR-14:32-Glu-CTC-1 promotes embryo hatching,while influencing embryo implantation-related genes and pathways.These results indicate that embryonic EVs containing specific tRFs may regulate preimplantation embryo development.展开更多
Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,F...Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests.展开更多
Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive...Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios.展开更多
Tree plantation and forest restoration are the major strategies for enhancing terrestrial carbon sequestration and mitigating climate change.The Grain for Green Project in China has positively impacted global carbon s...Tree plantation and forest restoration are the major strategies for enhancing terrestrial carbon sequestration and mitigating climate change.The Grain for Green Project in China has positively impacted global carbon sequestration and the trend towards fragmentation of plantation forests.Limited studies have been conducted on changes in plantation biomass and stand structure caused by fragmentation,and the effect of fragmentation on the carbon storage of plantation forests remains unclear.This study evaluated the differences between carbon storage and stand structure in black locust forests in fragmented and continuous landscape in the Ansai District,China and discussed the effects of ecological significance of four landscape indices on carbon storage and tree density.We used structural equation modelling to explore the direct and indirect effects of fragmentation,edge,abiotic factors,and stand structure on above-ground carbon storage.Diameter at breast height(DBH)in fragmented forests was 53.3%thicker,tree density was 40.9%lower,and carbon storage was 49.8%higher than those in continuous forests;for all given DBH>10 cm,the trees in fragmented forests were shorter than those in continuous forests.The patch area had a negative impact on carbon storage,i.e.,the higher the degree of fragmentation,the lower the density of the tree;and fragmentation and distance to edge(DTE)directly increased canopy coverage.However,canopy coverage directly decreased carbon storage,and fragmentation directly increased carbon storage and tree density.In non-commercial forests,fragmentation reduces the carbon storage potential of plantation,and the influence of patch area,edge,and patchy connection on plantation should be considered when follow-up trees are planted and for the plantation management.Thus,expanding the area of plantation patches,repairing the edges of complex-shaped patches,enhancing the connectivity of similar patches,and applying nutrients to plantation forests at regular intervals are recommended in fragmented areas of the Loess Plateau.展开更多
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it...High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.展开更多
To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p...To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.展开更多
This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of c...This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of complete collapse. Land fragmentation occurs when land gets converted for agriculture, industrialization, or urbanization, invaded by non-local plants, or enclosed for individual use and by subdividing farmlands into subsequent smaller units called parcels with varying average farm sizes. Fragmentation results from inappropriate agricultural development processes and ineffective land use planning that fails to recognize how farmland is used, and the importance of its interconnected areas. Insecurity of tenure and resource rights are key factors in making this possible. Land fragmentation is one of the key reasons why the ability of most resources in East Africa becomes scarcer, and those remaining become “privatized” by more powerful community members—keen to maintain their access to them. Such individualistic attitudes are new and disadvantage the poorest even further by affecting the traditional customary safety nets and agricultural outputs. Neither the government nor customary governance systems effectively protect resource access for the poorest. This review summary report identifies the key causes, measures, and implications, government interventions, and the common remedies to land fragmentation problems in the East African Countries of Kenya, Uganda, Rwanda, and Tanzania including neighboring Ethiopia, and the Sudan. The findings indicated from 2005 to 2015, the population kept increasing for all the named countries in East Africa with Rwanda and Uganda having a substantial increase in population density. The study review further explores the trend in the performance of agriculture by average farm sizes within the intervals of five years by highlighting their strong linkages and found that the average farm size has declined drastically, especially for Kenya. This can only mean that small farms kept becoming smaller and smaller and that there were more small-scale farmers. The results further depicted that the major and commonly cultivated food crops among the East African countries include maize, sorghum, rice, cassava, sweet potatoes, bananas, Irish potatoes, beans, peas, etc., with maize yields (Mt/ha) in 2003 for Uganda being the highest (1.79 Mt/ha) and the lowest in Rwanda (0.77 Mt/ha) respectively. Therefore, from the review results, recommendations are being made as to how the negative impacts of land fragmentation on agricultural productivity can be reduced or mitigated. One way is by community sensitization and awareness about the importance of land consolidation and its proposition on farm productivity.展开更多
Clarifying the evolution structure of public opinion induced and spread by fragmentation in college students’ network circle group is the key to understanding college students’ online social psychological demands, g...Clarifying the evolution structure of public opinion induced and spread by fragmentation in college students’ network circle group is the key to understanding college students’ online social psychological demands, grasping the development trend of public opinion, and designing targeted public opinion governance strategies. On the basis of identifying the key variables in the process of public opinion communication, DEMATEL-ISM model is used to explore the attribute positioning, relative importance level and hierarchical association mechanism of ante-variable and result variable, and then the governance strategies for fragment disordering public opinion in network circle groups of college students is designed. According to the study, exogenous stimuli, the uniqueness of discourse system, the number of spectacular texts and micro-narrative mode constituted the deep-rooted causes of fragment disordering public opinion. The unique situational and information attributes of network circle groups often become an important “booster” of disordered public opinion. The topic deviation is often accompanied with the formation of negative emotions. The corresponding public opinion governance strategies are sought from the aspects of shaping the network environment, adjusting the operation mechanism of the network circle group, improving the efficiency of using fragmented information, and optimizing the human resources of colleges.展开更多
Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thi...Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.展开更多
To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology ...To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology for simplifying the three-dimensional(3D)to two-dimensional(2D)quasiplane-strain problem and reducing computational costs by more than 100-fold.First,in situ tests were conducted involving single-hole and free-face blasting of a dolomite rock mass in a 1050-m-deep mine.The results were validated by laser scanning.The craters were then compared with four analytical models to calculate the radius of the crushing zone.Next,a full 3D model for single-hole blasting was prepared and validated by simulating the crack length and the radius of the crushing zone.Based on the stable crack propagation zones observed in the 3D model and experiments,a 2D model was prepared.The properties of the high explosive(HE)were slightly reduced to match the shape and number of radial cracks and crushing zone radius between the 3D and 2D models.The final methodology was used to reproduce various cut-hole blasting scenarios and observe the effects of residual cracks in the rock mass on further fragmentation.The presence of preexisting cracks was found to be crucial for fragmentation,particularly when the borehole was situated near a free rock face.Finally,an optimization study was performed to determine the possibility of losing rock continuity at different positions within the well in relation to the free rock face.展开更多
Objective:To determine the relationship between teratozoospermia and sperm DNA fragmentation(SDF)in the human ejaculate.Methods:This retrospective study included 100 normozoospermic men as a control cohort(abnormal fo...Objective:To determine the relationship between teratozoospermia and sperm DNA fragmentation(SDF)in the human ejaculate.Methods:This retrospective study included 100 normozoospermic men as a control cohort(abnormal forms>14%),210 patients with a high level of abnormal forms(≤4%)and 65 patients presenting with a moderate level of abnormal forms(>4%to≤14%)based on the World Health Organization definitions.Sperm morphology was assessed using bright field microscopy.Sperm DNA fragmentation was assessed using the sperm chromatin dispersion assay.Non-parametric analyses were conducted to examine the relationship between abnormal sperm morphology and sperm DNA fragmentation;receiver operating characteristic(ROC)analyses were conducted to assess sensitivity and specificity of this relationship.Results:A correlation analysis revealed that the higher the proportion of abnormal spermatozoa in the ejaculate,the higher the level of SDF(Spearman's Rho=-0.230;P<0.001).Significant differences in the proportion of SDF were found when all cohorts were compared(P<0.001);these significant differences were also retained when the different cohorts were compared pairwise.ROC analysis showed a moderate but significant predictive value for SDF to differentiate patients with different levels of teratozoospemia.Conclusions:Although analysis of a more continuous range of values for teratozoospermia would help further clarify any causal relationship with SDF,there is clearly a synergistic or coincident affiliation between these variables that needs to be acknowledged by the clinician when interpreting the spermiogram.展开更多
The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine...The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine the maximum fragment velocity.The current work builds on the published formula to further develop a formula for calculating the axial distribution characteristics of the fragment velocity.For this type of warhead,the simulation of the dispersion characteristics of the detonation products at different positions shows that the detonation products at the ends have a much larger axial velocity than those in the middle,and the detonation products have a greater axial dispersion velocity when they are closer to the central axis.The loading process and the fragment velocity vary with the axial position for both casing layers,and the total velocity of the fragments is the vector sum of the radial velocity and the axial velocity.At the same axial position,the acceleration time of the inner casing is greater than that of the outer casing.For the same casing,the fragments generated at the ends have a longer acceleration time than the fragments from the middle.The proposed formula is validated with the X-ray radiography results of the four warheads previously tested experimentally and the 3D smoothedparticle hydrodynamics numerical simulation results of several series of new warheads with different configurations.The formula can accurately and reliably calculate the fragment velocity when the lengthto-diameter ratio of the charge is greater than 1.5 and the thickness of the casing is less than 20%its inner radius.This work thus provides a key reference for the theoretical analysis and the design of warheads with multiple casings.展开更多
Landscape fragmentation is generally viewed as an indicator of environmental stresses or risks,but the fragmentation intensity assessment also depends on the scale of data and the definition of spatial unit.This study...Landscape fragmentation is generally viewed as an indicator of environmental stresses or risks,but the fragmentation intensity assessment also depends on the scale of data and the definition of spatial unit.This study aimed to explore the scale-dependence of forest fragmentation intensity along a moisture gradient in Yinshan Mountain of North China,and to estimate environmental sensitivity of forest fragmentation in this semi-arid landscape.We developed an automatic classification algorithm using simple linear iterative clustering(SLIC)and Gaussian mixture model(GMM),and extracted tree canopy patches from Google Earth images(GEI),with an accuracy of 89.2%in the study area.Then we convert the tree canopy patches to forest category according to definition of forest that tree density greater than 10%,and compared it with forest categories from global land use datasets,FROM-GLC10 and GlobeLand30,with spatial resolutions of 10 m and 30 m,respectively.We found that the FROM-GLC10 and GlobeLand30 datasets underestimated the forest area in Yinshan Mountain by 16.88%and 21.06%,respectively;and the ratio of open forest(OF,10%<tree coverage<40%)to closed forest(CF,tree coverage>40%)areas in the underestimated part was 2:1.The underestimations concentrated in warmer and drier areas occupied mostly by large coverage of OFs with severely fragmented canopies.Fragmentation intensity of canopies positively correlated with spring temperature while negatively correlated with summer precipitation and terrain slope.When summer precipitation was less than 300 mm or spring temperature higher than 4℃,canopy fragmentation intensity rose drastically,while the forest area percentage kept stable.Our study suggested that the spatial configuration,e.g.,sparseness,is more sensitive to drought stress than area percentage.This highlights the importance of data resolution and proper fragmentation measurements for forest patterns and environmental interpretation,which is the base of reliable ecosystem predictions with regard to the future climate scenarios.展开更多
As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model...As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.展开更多
Spontaneous combustion of coal increases the temperature in adjoining overburden strata of coal seams and poses a challenge when loading blastholes.This condition,known as hot-hole blasting,is dangerous due to the inc...Spontaneous combustion of coal increases the temperature in adjoining overburden strata of coal seams and poses a challenge when loading blastholes.This condition,known as hot-hole blasting,is dangerous due to the increased possibility of premature explosions in loaded blastholes.Thus,it is crucial to load the blastholes with an appropriate amount of explosives within a short period to avoid premature detonation caused by high temperatures of blastholes.Additionally,it will help achieve the desired fragment size.This study tried to ascertain the most influencial variables of mean fragment size and their optimum values adopted for blasting in a fiery seam.Data on blast design,rock mass,and fragmentation of 100 blasts in fiery seams of a coal mine were collected and used to develop mean fragmentation prediction models using soft computational techniques.The coefficient of determination(R^(2)),root mean square error(RMSE),mean absolute error(MAE),mean square error(MSE),variance account for(VAF)and coefficient of efficiency in percentage(CE)were calculated to validate the results.It indicates that the random forest algorithm(RFA)outperforms the artificial neural network(ANN),response surface method(RSM),and decision tree(DT).The values of R^(2),RMSE,MAE,MSE,VAF,and CE for RFA are 0.94,0.034,0.027,0.001,93.58,and 93.01,respectively.Multiple parametric sensitivity analyses(MPSAs)of the input variables showed that the Schmidt hammer rebound number and spacing-to-burden ratio are the most influencial variables for the blast fragment size.The analysis was finally used to define the best blast design variables to achieve optimum fragment size from blasting.The optimum factor values for RFA of S/B,ld/B and ls/ld are 1.03,1.85 and 0.7,respectively.展开更多
BACKGROUND Acute pancreatitis(AP)is a disease featuring acute inflammation of the pancreas and histological destruction of acinar cells.Approximately 20%of AP patients progress to moderately severe or severe pancreati...BACKGROUND Acute pancreatitis(AP)is a disease featuring acute inflammation of the pancreas and histological destruction of acinar cells.Approximately 20%of AP patients progress to moderately severe or severe pancreatitis,with a case fatality rate of up to 30%.However,a single indicator that can serve as the gold standard for prognostic prediction has not been discovered.Therefore,gaining deeper insights into the underlying mechanism of AP progression and the evolution of the disease and exploring effective biomarkers are important for early diagnosis,progression evaluation,and precise treatment of AP.AIM To determine the regulatory mechanisms of tRNA-derived fragments(tRFs)in AP based on small RNA sequencing and experiments.METHODS Small RNA sequencing and functional enrichment analyses were performed to identify key tRFs and the potential mechanisms in AP.Reverse transcription quantitative polymerase chain reaction(RT-qPCR)was conducted to determine tRF expression.AP cell and mouse models were created to investigate the role of tRF36 in AP progression.Lipase,amylase,and cytokine levels were assayed to examine AP progression.Ferritin expression,reactive oxygen species,malondialdehyde,and ferric ion levels were assayed to evaluate cellular ferroptosis.RNA pull down assays and methylated RNA immunoprecipitation were performed to explore the molecular mechanisms.RESULTS RT-qPCR results showed that tRF36 was significantly upregulated in the serum of AP patients,compared to healthy controls.Functional enrichment analysis indicated that target genes of tRF36 were involved in ferroptosisrelated pathways,including the Hippo signaling pathway and ion transport.Moreover,the occurrence of pancreatic cell ferroptosis was detected in AP cells and mouse models.The results of interference experiments and AP cell models suggested that tRF-36 could promote AP progression through the regulation of ferroptosis.Furthermore,ferroptosis gene microarray,database prediction,and immunoprecipitation suggested that tRF-36 accelerated the progression of AP by recruiting insulin-like growth factor 2 mRNA binding protein 3(IGF2BP3)to the p53 mRNA m6A modification site by binding to IGF2BP3,which enhanced p53 mRNA stability and promoted the ferroptosis of pancreatic follicle cells.CONCLUSION In conclusion,regulation of nuclear pre-mRNA domain-containing protein 1B promoted AP development by regulating the ferroptosis of pancreatic cells,thereby acting as a prospective therapeutic target for AP.In addition,this study provided a basis for understanding the regulatory mechanisms of tRFs in AP.展开更多
基金Projects(42177164,52474121)supported by the National Science Foundation of ChinaProject(PBSKL2023A12)supported by the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,China。
文摘In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.
基金supported by the National Natural Science Foundation of China(Nos.52034006,52004229,52225401,and 52274231)the Regional Innovation Cooperation Project of Sichuan Province(No.2022YFQ0059)+3 种基金Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(No.2020CX040301)Natural Science Foundation of Sichuan Province(No.2023NSFSC0431)Science and Technology Strategic Cooperation Project between Nanchong City and Southwest Petroleum University(No.SXHZ004)Research and innovation Fund for Graduate Students of Southwest Petroleum University(No.2022KYCX058).
文摘Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering the heterogeneity of the rock,microscopic thermodynamic properties,and shockwave time domain waveforms,based on the shockwave model,digital imaging technology and the discrete element method,the cyclic loading numerical simulations of HERF is achieved by coupling electrical,thermal,and solid mechanics under different formation temperatures,confining pressure,initial peak voltage,electrode bit diameter,and loading times.Meanwhile,the HERF discharge system is conducive to the laboratory experiments with various electrical parameters and the resulting broken pits are numerically reconstructed to obtain the geometric parameters.The results show that,the completely broken area consists of powdery rock debris.In the pre-broken zone,the mineral cementation of the rock determines the transition of type CⅠcracks to type CⅡand type CⅢcracks.Furthermore,the peak pressure of the shockwave increased with initial peak voltage but decreased with electrode bit diameter,while the wave front time reduced.Moreover,increasing well depth,formation temperature and confining pressure augment and inhibit HERF,but once confining pressure surpassed the threshold of 60 MPa for 152.40,215.90,and 228.60 mm electrode bits,and 40 MPa for 309.88 mm electrode bits,HERF is promoted.Additionally,for the same kind of rock,the volume and width of the broken pit increase with higher initial peak voltage and rock fissures will promote HERF.Eventually,the electrode drill bit with a 215.90 mm diameter is more suitable for drilling pink granite.This research contributes to a better microscopic understanding of HERF and provides valuable insights for electrode bit selection,as well as the optimization of circuit parameters for HERF technology.
基金funded by the National Natural Science Foundation of China (Grant Nos.12302444 and 12202349)。
文摘An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of the fragments formed.This study investigated the fragmentation performance of a new high-carbon silicon-manganese(HCSiMn)steel cylindrical shell through fragment recovery experiments.Compared with the conventional 45Cr steel shell,the number of small mass fragments produced by the HCSi Mn steel shell was significantly increased with a scale parameter of 0.57 g fitted by the Weibull distribution model.The fragmentation process of the HCSi Mn shell exhibited more brittle tensile fracture characteristics,with the microcrack damage zone on the outer surface being the direct cause of its high fragmentation.On the one hand,the doping of alloy elements resulted in grain refinement by forming metallographic structure of tempered sorbite,so that microscopic intergranular fracture reduces the characteristic mass of the fragments;on the other hand,the distribution of alloy carbides can exert a"pinning"effect on the substrate grains,causing more initial cracks to form and propagate along the brittle carbides,further improving the shell fragmentation.Although the killing power radius for light armored vehicles was slightly reduced by about 6%,the dense killing radius of HCSiMn steel projectile against personnel can be significantly increased by about 26%based on theoretical assessment.These results provided an experimental basis for high fragmentation warhead design,and to some extent,revealed the correlation mechanism between metallographic structure and shell fragmentation.
基金This research was supported by project number(RSP2024R384)King Saud University,Riyadh,Saudi Arabia.
文摘This study comprehensively assessed long-term vegetation changes and forest fragmentation dynamics in the Himalayan temperate region of Pakistan from 1989 to 2019.Four satellite images,including Landsat-5 TM and Landsat-8 Operational Land Imager(OLI),were chosen for subsequent assessments in October 1989,2001,2011 and 2019.The classified maps of 1989,2001,2011 and 2019 were created using the maximum likelihood classifier.Post-classification comparison showed an overall accuracy of 82.5%and a Kappa coefficient of 0.79 for the 2019 map.Results revealed a drastic decrease in closed-canopy and open-canopy forests by 117.4 and 271.6 km^(2),respectively,and an increase in agriculture/farm cultivation by 1512.8 km^(2).The two-way ANOVA test showed statistically significant differences in the area of various cover classes.Forest fragmentation was evaluated using the Landscape Fragmentation Tool(LFT v2.0)between 1989 and 2019.The large forest core(>2.00 km^(2))decreased from 149.4 to 296.7 km^(2),and a similar pattern was observed in medium forest core(1.00-2.00 km^(2))forests.On the contrary,the small core(<1.00 km^(2))forest increased from 124.8 to 145.3 km^(2) in 2019.The perforation area increased by 296.9 km^(2),and the edge effect decreased from 458.9 to 431.7 km^(2).The frequency of patches also increased by 119.1 km^(2).The closed and open canopy classes showed a decreasing trend with an annual rate of 0.58%and 1.35%,respectively.The broad implications of these findings can be seen in the studied region as well as other global ecological areas.They serve as an imperative baseline for afforestation and reforestation operations,highlighting the urgent need for efficient management,conservation,and restoration efforts.Based on these findings,sustainable land-use policies may be put into place that support local livelihoods,protect ecosystem services,and conserve biodiversity.
基金supported by Ghent University(Grant:Bijzonder Onderzoeksfonds Geconcerteerde Onderzoeksactie 2018000504[GOA030-18 BOF])supported by Ghent University:BOF.STG.2022.02.0034.01+1 种基金supported by China Scholarship Council:Grant 202006910034supported by Fonds Wetenschappelijk Onderzoek:Grant 1228821N and 12A2H24N。
文摘Transfer RNA-derived small RNAs(tsRNAs)have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells.However,it is unknown whether tsRNAs also regulate embryo hatching.In this study,we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA(miRNA)cargo of preimplantation embryonic extracellular vesicles(EVs)influences embryo development.We thus profiled the tsRNA cargo of EVs secreted by blastocysts and non-blastocysts.The majority of tsRNAs was identified as tRNA halves originating from the 5'ends of tRNAs.Among the 148 differentially expressed tsRNAs,the 19 nt tRNA fragment(tRF)tDR-14:32-Glu-CTC-1 was found to be significantly up-regulated in EVs derived from non-blastocysts.RT-qPCR assays confirmed its significant up-regulation in non-blastocyst embryos and their conditioned medium compared to the blastocyst group(P<0.05).Inhibition of tDR-14:32-Glu-CTC-1 by supplementing antagomirs to the conditioned medium improved embryo hatching(P<0.05).Transcriptomic analysis of embryos treated with tDR-14:32-Glu-CTC-1 antagomirs further showed differential expression of genes that are associated with embryo hatching and implantation.In summary,tDR-14:32-Glu-CTC-1 is up-regulated in non-blastocyst embryos and their secretions,and inhibition of tDR-14:32-Glu-CTC-1 promotes embryo hatching,while influencing embryo implantation-related genes and pathways.These results indicate that embryonic EVs containing specific tRFs may regulate preimplantation embryo development.
基金supported by the National Natural Science Foundation of China(Nos.51879184 and 12172253).
文摘Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests.
基金support from the National Key R&D plan(Grant No.2022YFC3004303)the National Natural Science Foundation of China(Grant No.42107161)+3 种基金the State Key Laboratory of Hydroscience and Hydraulic Engineering(Grant No.2021-KY-04)the Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering(sklhse-2023-C-01)the Open Research Fund Program of Key Laboratory of the Hydrosphere of the Ministry of Water Resources(mklhs-2023-04)the China Three Gorges Corporation(XLD/2117).
文摘Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios.
基金supported by the National Natural Science Foundation of China(32201429)the College of Landscape Architecture and Art,Northwest A&F University,China.
文摘Tree plantation and forest restoration are the major strategies for enhancing terrestrial carbon sequestration and mitigating climate change.The Grain for Green Project in China has positively impacted global carbon sequestration and the trend towards fragmentation of plantation forests.Limited studies have been conducted on changes in plantation biomass and stand structure caused by fragmentation,and the effect of fragmentation on the carbon storage of plantation forests remains unclear.This study evaluated the differences between carbon storage and stand structure in black locust forests in fragmented and continuous landscape in the Ansai District,China and discussed the effects of ecological significance of four landscape indices on carbon storage and tree density.We used structural equation modelling to explore the direct and indirect effects of fragmentation,edge,abiotic factors,and stand structure on above-ground carbon storage.Diameter at breast height(DBH)in fragmented forests was 53.3%thicker,tree density was 40.9%lower,and carbon storage was 49.8%higher than those in continuous forests;for all given DBH>10 cm,the trees in fragmented forests were shorter than those in continuous forests.The patch area had a negative impact on carbon storage,i.e.,the higher the degree of fragmentation,the lower the density of the tree;and fragmentation and distance to edge(DTE)directly increased canopy coverage.However,canopy coverage directly decreased carbon storage,and fragmentation directly increased carbon storage and tree density.In non-commercial forests,fragmentation reduces the carbon storage potential of plantation,and the influence of patch area,edge,and patchy connection on plantation should be considered when follow-up trees are planted and for the plantation management.Thus,expanding the area of plantation patches,repairing the edges of complex-shaped patches,enhancing the connectivity of similar patches,and applying nutrients to plantation forests at regular intervals are recommended in fragmented areas of the Loess Plateau.
基金Key Basic Research Project of Strengthening the Foundations Plan of China (Grant No.2019-JCJQ-ZD-360-12)National Defense Basic Scientific Research Program of China (Grant No.JCKY2021208B011)to provide fund for conducting experiments。
文摘High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.
基金supported by National Natural Science Foundation of China(Grant No.62073256)the Shaanxi Provincial Science and Technology Department(Grant No.2023-YBGY-342).
文摘To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.
文摘This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of complete collapse. Land fragmentation occurs when land gets converted for agriculture, industrialization, or urbanization, invaded by non-local plants, or enclosed for individual use and by subdividing farmlands into subsequent smaller units called parcels with varying average farm sizes. Fragmentation results from inappropriate agricultural development processes and ineffective land use planning that fails to recognize how farmland is used, and the importance of its interconnected areas. Insecurity of tenure and resource rights are key factors in making this possible. Land fragmentation is one of the key reasons why the ability of most resources in East Africa becomes scarcer, and those remaining become “privatized” by more powerful community members—keen to maintain their access to them. Such individualistic attitudes are new and disadvantage the poorest even further by affecting the traditional customary safety nets and agricultural outputs. Neither the government nor customary governance systems effectively protect resource access for the poorest. This review summary report identifies the key causes, measures, and implications, government interventions, and the common remedies to land fragmentation problems in the East African Countries of Kenya, Uganda, Rwanda, and Tanzania including neighboring Ethiopia, and the Sudan. The findings indicated from 2005 to 2015, the population kept increasing for all the named countries in East Africa with Rwanda and Uganda having a substantial increase in population density. The study review further explores the trend in the performance of agriculture by average farm sizes within the intervals of five years by highlighting their strong linkages and found that the average farm size has declined drastically, especially for Kenya. This can only mean that small farms kept becoming smaller and smaller and that there were more small-scale farmers. The results further depicted that the major and commonly cultivated food crops among the East African countries include maize, sorghum, rice, cassava, sweet potatoes, bananas, Irish potatoes, beans, peas, etc., with maize yields (Mt/ha) in 2003 for Uganda being the highest (1.79 Mt/ha) and the lowest in Rwanda (0.77 Mt/ha) respectively. Therefore, from the review results, recommendations are being made as to how the negative impacts of land fragmentation on agricultural productivity can be reduced or mitigated. One way is by community sensitization and awareness about the importance of land consolidation and its proposition on farm productivity.
文摘Clarifying the evolution structure of public opinion induced and spread by fragmentation in college students’ network circle group is the key to understanding college students’ online social psychological demands, grasping the development trend of public opinion, and designing targeted public opinion governance strategies. On the basis of identifying the key variables in the process of public opinion communication, DEMATEL-ISM model is used to explore the attribute positioning, relative importance level and hierarchical association mechanism of ante-variable and result variable, and then the governance strategies for fragment disordering public opinion in network circle groups of college students is designed. According to the study, exogenous stimuli, the uniqueness of discourse system, the number of spectacular texts and micro-narrative mode constituted the deep-rooted causes of fragment disordering public opinion. The unique situational and information attributes of network circle groups often become an important “booster” of disordered public opinion. The topic deviation is often accompanied with the formation of negative emotions. The corresponding public opinion governance strategies are sought from the aspects of shaping the network environment, adjusting the operation mechanism of the network circle group, improving the efficiency of using fragmented information, and optimizing the human resources of colleges.
基金the National Natural Science Foundation of China(Nos.12375123,11975091,and 12305130)the Natural Science Foundation of Henan Province(No.242300421048)+1 种基金China Postdoctoral Science Foundation(No.2023M731016)Henan Postdoctoral Foundation(No.HN2022164).
文摘Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.
文摘To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology for simplifying the three-dimensional(3D)to two-dimensional(2D)quasiplane-strain problem and reducing computational costs by more than 100-fold.First,in situ tests were conducted involving single-hole and free-face blasting of a dolomite rock mass in a 1050-m-deep mine.The results were validated by laser scanning.The craters were then compared with four analytical models to calculate the radius of the crushing zone.Next,a full 3D model for single-hole blasting was prepared and validated by simulating the crack length and the radius of the crushing zone.Based on the stable crack propagation zones observed in the 3D model and experiments,a 2D model was prepared.The properties of the high explosive(HE)were slightly reduced to match the shape and number of radial cracks and crushing zone radius between the 3D and 2D models.The final methodology was used to reproduce various cut-hole blasting scenarios and observe the effects of residual cracks in the rock mass on further fragmentation.The presence of preexisting cracks was found to be crucial for fragmentation,particularly when the borehole was situated near a free rock face.Finally,an optimization study was performed to determine the possibility of losing rock continuity at different positions within the well in relation to the free rock face.
文摘Objective:To determine the relationship between teratozoospermia and sperm DNA fragmentation(SDF)in the human ejaculate.Methods:This retrospective study included 100 normozoospermic men as a control cohort(abnormal forms>14%),210 patients with a high level of abnormal forms(≤4%)and 65 patients presenting with a moderate level of abnormal forms(>4%to≤14%)based on the World Health Organization definitions.Sperm morphology was assessed using bright field microscopy.Sperm DNA fragmentation was assessed using the sperm chromatin dispersion assay.Non-parametric analyses were conducted to examine the relationship between abnormal sperm morphology and sperm DNA fragmentation;receiver operating characteristic(ROC)analyses were conducted to assess sensitivity and specificity of this relationship.Results:A correlation analysis revealed that the higher the proportion of abnormal spermatozoa in the ejaculate,the higher the level of SDF(Spearman's Rho=-0.230;P<0.001).Significant differences in the proportion of SDF were found when all cohorts were compared(P<0.001);these significant differences were also retained when the different cohorts were compared pairwise.ROC analysis showed a moderate but significant predictive value for SDF to differentiate patients with different levels of teratozoospemia.Conclusions:Although analysis of a more continuous range of values for teratozoospermia would help further clarify any causal relationship with SDF,there is clearly a synergistic or coincident affiliation between these variables that needs to be acknowledged by the clinician when interpreting the spermiogram.
基金supported by the National Natural Science Foundation of China(Grant No.11872121)。
文摘The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine the maximum fragment velocity.The current work builds on the published formula to further develop a formula for calculating the axial distribution characteristics of the fragment velocity.For this type of warhead,the simulation of the dispersion characteristics of the detonation products at different positions shows that the detonation products at the ends have a much larger axial velocity than those in the middle,and the detonation products have a greater axial dispersion velocity when they are closer to the central axis.The loading process and the fragment velocity vary with the axial position for both casing layers,and the total velocity of the fragments is the vector sum of the radial velocity and the axial velocity.At the same axial position,the acceleration time of the inner casing is greater than that of the outer casing.For the same casing,the fragments generated at the ends have a longer acceleration time than the fragments from the middle.The proposed formula is validated with the X-ray radiography results of the four warheads previously tested experimentally and the 3D smoothedparticle hydrodynamics numerical simulation results of several series of new warheads with different configurations.The formula can accurately and reliably calculate the fragment velocity when the lengthto-diameter ratio of the charge is greater than 1.5 and the thickness of the casing is less than 20%its inner radius.This work thus provides a key reference for the theoretical analysis and the design of warheads with multiple casings.
基金the Natural Science Foundation of China(Grant No.41790425).
文摘Landscape fragmentation is generally viewed as an indicator of environmental stresses or risks,but the fragmentation intensity assessment also depends on the scale of data and the definition of spatial unit.This study aimed to explore the scale-dependence of forest fragmentation intensity along a moisture gradient in Yinshan Mountain of North China,and to estimate environmental sensitivity of forest fragmentation in this semi-arid landscape.We developed an automatic classification algorithm using simple linear iterative clustering(SLIC)and Gaussian mixture model(GMM),and extracted tree canopy patches from Google Earth images(GEI),with an accuracy of 89.2%in the study area.Then we convert the tree canopy patches to forest category according to definition of forest that tree density greater than 10%,and compared it with forest categories from global land use datasets,FROM-GLC10 and GlobeLand30,with spatial resolutions of 10 m and 30 m,respectively.We found that the FROM-GLC10 and GlobeLand30 datasets underestimated the forest area in Yinshan Mountain by 16.88%and 21.06%,respectively;and the ratio of open forest(OF,10%<tree coverage<40%)to closed forest(CF,tree coverage>40%)areas in the underestimated part was 2:1.The underestimations concentrated in warmer and drier areas occupied mostly by large coverage of OFs with severely fragmented canopies.Fragmentation intensity of canopies positively correlated with spring temperature while negatively correlated with summer precipitation and terrain slope.When summer precipitation was less than 300 mm or spring temperature higher than 4℃,canopy fragmentation intensity rose drastically,while the forest area percentage kept stable.Our study suggested that the spatial configuration,e.g.,sparseness,is more sensitive to drought stress than area percentage.This highlights the importance of data resolution and proper fragmentation measurements for forest patterns and environmental interpretation,which is the base of reliable ecosystem predictions with regard to the future climate scenarios.
基金Supported by the National Key Research and Development Program of China(No.2021YFB2401204)。
文摘As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.
文摘Spontaneous combustion of coal increases the temperature in adjoining overburden strata of coal seams and poses a challenge when loading blastholes.This condition,known as hot-hole blasting,is dangerous due to the increased possibility of premature explosions in loaded blastholes.Thus,it is crucial to load the blastholes with an appropriate amount of explosives within a short period to avoid premature detonation caused by high temperatures of blastholes.Additionally,it will help achieve the desired fragment size.This study tried to ascertain the most influencial variables of mean fragment size and their optimum values adopted for blasting in a fiery seam.Data on blast design,rock mass,and fragmentation of 100 blasts in fiery seams of a coal mine were collected and used to develop mean fragmentation prediction models using soft computational techniques.The coefficient of determination(R^(2)),root mean square error(RMSE),mean absolute error(MAE),mean square error(MSE),variance account for(VAF)and coefficient of efficiency in percentage(CE)were calculated to validate the results.It indicates that the random forest algorithm(RFA)outperforms the artificial neural network(ANN),response surface method(RSM),and decision tree(DT).The values of R^(2),RMSE,MAE,MSE,VAF,and CE for RFA are 0.94,0.034,0.027,0.001,93.58,and 93.01,respectively.Multiple parametric sensitivity analyses(MPSAs)of the input variables showed that the Schmidt hammer rebound number and spacing-to-burden ratio are the most influencial variables for the blast fragment size.The analysis was finally used to define the best blast design variables to achieve optimum fragment size from blasting.The optimum factor values for RFA of S/B,ld/B and ls/ld are 1.03,1.85 and 0.7,respectively.
基金the National Natural Science Foundation of China,No.81860424.
文摘BACKGROUND Acute pancreatitis(AP)is a disease featuring acute inflammation of the pancreas and histological destruction of acinar cells.Approximately 20%of AP patients progress to moderately severe or severe pancreatitis,with a case fatality rate of up to 30%.However,a single indicator that can serve as the gold standard for prognostic prediction has not been discovered.Therefore,gaining deeper insights into the underlying mechanism of AP progression and the evolution of the disease and exploring effective biomarkers are important for early diagnosis,progression evaluation,and precise treatment of AP.AIM To determine the regulatory mechanisms of tRNA-derived fragments(tRFs)in AP based on small RNA sequencing and experiments.METHODS Small RNA sequencing and functional enrichment analyses were performed to identify key tRFs and the potential mechanisms in AP.Reverse transcription quantitative polymerase chain reaction(RT-qPCR)was conducted to determine tRF expression.AP cell and mouse models were created to investigate the role of tRF36 in AP progression.Lipase,amylase,and cytokine levels were assayed to examine AP progression.Ferritin expression,reactive oxygen species,malondialdehyde,and ferric ion levels were assayed to evaluate cellular ferroptosis.RNA pull down assays and methylated RNA immunoprecipitation were performed to explore the molecular mechanisms.RESULTS RT-qPCR results showed that tRF36 was significantly upregulated in the serum of AP patients,compared to healthy controls.Functional enrichment analysis indicated that target genes of tRF36 were involved in ferroptosisrelated pathways,including the Hippo signaling pathway and ion transport.Moreover,the occurrence of pancreatic cell ferroptosis was detected in AP cells and mouse models.The results of interference experiments and AP cell models suggested that tRF-36 could promote AP progression through the regulation of ferroptosis.Furthermore,ferroptosis gene microarray,database prediction,and immunoprecipitation suggested that tRF-36 accelerated the progression of AP by recruiting insulin-like growth factor 2 mRNA binding protein 3(IGF2BP3)to the p53 mRNA m6A modification site by binding to IGF2BP3,which enhanced p53 mRNA stability and promoted the ferroptosis of pancreatic follicle cells.CONCLUSION In conclusion,regulation of nuclear pre-mRNA domain-containing protein 1B promoted AP development by regulating the ferroptosis of pancreatic cells,thereby acting as a prospective therapeutic target for AP.In addition,this study provided a basis for understanding the regulatory mechanisms of tRFs in AP.