期刊文献+
共找到7,031篇文章
< 1 2 250 >
每页显示 20 50 100
Chebyshev polynomial-based Ritz method for thermal buckling and free vibration behaviors of metal foam beams
1
作者 N.D.NGUYEN T.N.NGUYEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期891-910,共20页
This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and tw... This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses. 展开更多
关键词 Ritz method Chebyshev function BUCKLING VIBRATION metal foam beam higher-order beam theory(HOBT)
下载PDF
Dynamic Characteristics of Functionally Graded Timoshenko Beams by Improved Differential Quadrature Method
2
作者 Xiaojun Huang Liaojun Zhang +1 位作者 Hanbo Cui Gaoxing Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1647-1668,共22页
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node... This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature. 展开更多
关键词 Timoshenko beams functionally graded materials dynamic characteristics natural frequency improved differential quadrature method
下载PDF
Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions
3
作者 Xiaoyang SU Tong HU +3 位作者 Wei ZHANG Houjun KANG Yunyue CONG Quan YUAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期983-1000,共18页
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th... Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM. 展开更多
关键词 transfer matrix method(TMM) free vibration forced vibration functionally graded material(FGM) stepped beam
下载PDF
Hermite Finite Element Method for Vibration Problem of Euler-Bernoulli Beam on Viscoelastic Pasternak Foundation
4
作者 Pengfei Ji Zhe Yin 《Engineering(科研)》 2024年第10期337-352,共16页
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul... Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis. 展开更多
关键词 Viscoelastic Pasternak Foundation beam Vibration Equation Hermite Finite Element method Error Estimation Numerical Simulation
下载PDF
Comparison study on calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949 被引量:1
5
作者 淳庆 Van Balen Koenraad 韩宜丹 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期529-534,共6页
In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, t... In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, the concrete compressive strength of 12 modem Chinese concrete buildings, and the concrete cover thickness of 9 modem Chinese concrete buildings are carried out; and the actual material properties and structural conformations of modem Chinese concrete buildings are obtained. Then, the comparison on calculation methods of bending behavior including the original Chinese calculation method, the present Chinese calculation method, the present American calculation method and the present European calculation method is studied. The results show that the original Chinese calculation method of bending behavior is based on the allowable stress calculation method, and the design safety factors are 3.55 to 4. 0. In term of the calculation area of longitudinal rebars of reinforced concrete beams, without considering earthquake action, the original Chinese structural calculation method is safer than the present Chinese structural calculation method, the present European structural calculation method, and the present American structural calculation method. The results can provide support for the structural safety assessments of modem Chinese reinforced concrete buildings. 展开更多
关键词 reinforced concrete beam the Republic of China era from 1912 to 1949 bending behavior calculation method comparative study
下载PDF
Longwall mining “cutting cantilever beam theory” and 110 mining method in China——The third mining science innovation 被引量:66
6
作者 Manchao He Guolong Zhu Zhibiao Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第5期483-492,共10页
With the third innovation in science and technology worldwide, China has also experienced thismarvelous progress. Concerning the longwall mining in China, the "masonry beam theory" (MBT) wasfirst proposed in the 1... With the third innovation in science and technology worldwide, China has also experienced thismarvelous progress. Concerning the longwall mining in China, the "masonry beam theory" (MBT) wasfirst proposed in the 1960s, illustrating that the transmission and equilibrium method of overburdenpressure using reserved coal pillar in mined-out areas can be realized. This forms the so-called "121mining method", which lays a solid foundation for development of mining science and technology inChina. The "transfer rock beam theory" (TRBT) proposed in the 1980s gives a further understanding forthe transmission path of stope overburden pressure and pressure distribution in high-stress areas. In thisregard, the advanced 121 mining method was proposed with smaller coal pillar for excavation design,making significant contributions to improvement of the coal recovery rate in that era. In the 21st century,the traditional mining technologies faced great challenges and, under the theoretical developmentspioneered by Profs. Minggao Qian and Zhenqi Song, the "cutting cantilever beam theory" (CCBT) wasproposed in 2008. After that the 110 mining method is formulated subsequently, namely one stope face,after the first mining cycle, needs one advanced gateway excavation, while the other one is automaticallyformed during the last mining cycle without coal pillars left in the mining area. This method can beimplemented using the CCBT by incorporating the key technologies, including the directional presplittingroof cutting, constant resistance and large deformation (CRLD) bolt/anchor supporting systemwith negative Poisson's ratio (NPR) effect material, and remote real-time monitoring technology. TheCCBT and 110 mining method will provide the theoretical and technical basis for the development ofmining industry in China. 展开更多
关键词 Mining innovation 121 mining method Cutting cantilever beam theory (CCBT) Non-pillar mining 110 mining method
下载PDF
One Computational Method of the Eigenvalues of the Horizontal Vibration Problem of Beam 被引量:1
7
作者 黄滨 《Journal of Southeast University(English Edition)》 EI CAS 2002年第3期277-282,共6页
This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy in... This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy inequality is used to obtain a basic inequality. Secondly, the functions of basis are made by Galerkin method, and the error estimates of eignevalues are obtained by Cauchy inequality. At last, the computational method of the approximate value of the eigenvalues turns out immediately, and acc... 展开更多
关键词 horizontal vibration problem of beam eigenvalue EIGENFUNCTION Galerkin method
下载PDF
Transverse free vibration analysis of a tapered Timoshenko beam on visco-Pasternak foundations using the interpolating matrix method 被引量:6
8
作者 Zhang Jinlun Ge Renyu Zhang Liaojun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第3期567-578,共12页
The characteristics of transverse free vibration of a tapered Timoshenko beam under an axially conservative compression resting on visco-Pasternak foundations are investigated by the interpolating matrix method. The r... The characteristics of transverse free vibration of a tapered Timoshenko beam under an axially conservative compression resting on visco-Pasternak foundations are investigated by the interpolating matrix method. The research is executed in view of a three-parameter foundation which includes the eff ects of the Winkler coeffi cient, Pasternak coeffi cient and damping coeffi cient of the elastic medium. The governing equations of free vibration of a non-prismatic Timoshenko beam under an axially conservative force resting on visco-Pasternak foundations are transformed into ordinary diff erential equations with variable coeffi cients in light of the bending rotation angle and transverse displacement. All the natural frequencies orders together with the corresponding mode shapes of the beam are calculated at the same time, and a good convergence and accuracy of the proposed method is verifi ed through two numerical examples. The infl uences of foundation mechanical characteristics together with rotary inertia and shear deformation on natural frequencies of the beam with diff erent taper ratios are analyzed. A comprehensive parametric numerical study is carried out emphasizing the primary parameters that describe the dynamic property of the beam. 展开更多
关键词 interpolating matrix method vibration analysis tapered TIMOSHENKO beam visco-Pasternak foundation
下载PDF
Quasi-static and dynamical analyses of a thermoviscoelastic Timoshenko beam using the differential quadrature method 被引量:5
9
作者 Qiang LYU Jingjing LI Nenghui ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第4期549-562,共14页
The quasi-static and dynamic responses of a thermoviscoelastic Timoshenko beam subject to thermal loads are analyzed. First, based on the small geometric deformation assumption and Boltzmann constitutive relation, the... The quasi-static and dynamic responses of a thermoviscoelastic Timoshenko beam subject to thermal loads are analyzed. First, based on the small geometric deformation assumption and Boltzmann constitutive relation, the governing equations for the beam are presented. Second, an extended differential quadrature method(DQM)in the spatial domain and a differential method in the temporal domain are combined to transform the integro-partial-differential governing equations into the ordinary differential equations. Third, the accuracy of the present discrete method is verified by elastic/viscoelastic examples, and the effects of thermal load parameters, material and geometrical parameters on the quasi-static and dynamic responses of the beam are discussed. Numerical results show that the thermal function parameter has a great effect on quasi-static and dynamic responses of the beam. Compared with the thermal relaxation time, the initial vibrational responses of the beam are more sensitive to the mechanical relaxation time of the thermoviscoelastic material. 展开更多
关键词 TIMOSHENKO beam THERMOVISCOELASTICITY thermal load dynamic response differential QUADRATURE method(DQM)
下载PDF
Free vibration of non-uniform axially functionally graded beams using the asymptotic development method 被引量:5
10
作者 Dongxing CAO Yanhui GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第1期85-96,共12页
The asymptotic development method is applied to analyze the free vibration of non-uniform axially functionally graded(AFG) beams, of which the governing equations are differential equations with variable coefficients.... The asymptotic development method is applied to analyze the free vibration of non-uniform axially functionally graded(AFG) beams, of which the governing equations are differential equations with variable coefficients. By decomposing the variable flexural stiffness and mass per unit length into reference invariant and variant parts, the perturbation theory is introduced to obtain an approximate analytical formula of the natural frequencies of the non-uniform AFG beams with different boundary conditions.Furthermore, assuming polynomial distributions of Young's modulus and the mass density, the numerical results of the AFG beams with various taper ratios are obtained and compared with the published literature results. The discussion results illustrate that the proposed method yields an effective estimate of the first three order natural frequencies for the AFG tapered beams. However, the errors increase with the increase in the mode orders especially for the cases with variable heights. In brief, the asymptotic development method is verified to be simple and efficient to analytically study the free vibration of non-uniform AFG beams, and it could be used to analyze any tapered beams with an arbitrary varying cross width. 展开更多
关键词 AXIALLY functionally graded(AFG)beam NON-UNIFORM NATURAL frequency ASYMPTOTIC development method
下载PDF
Dynamic analysis of a rotating tapered cantilever Timoshenko beam based on the power series method 被引量:5
11
作者 Xiaodong YANG Shaowen WANG +2 位作者 Wei ZHANG Zhaohong QIN Tianzhi YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第10期1425-1438,共14页
The mathematical modeling of a rotating tapered Timoshenko beam with preset and pre-twist angles is constructed. The partial differential equations governing the six degrees, i.e., three displacements in the axial, fl... The mathematical modeling of a rotating tapered Timoshenko beam with preset and pre-twist angles is constructed. The partial differential equations governing the six degrees, i.e., three displacements in the axial, flapwise, and edgewise directions and three cross-sectional angles of torsion, flapwise bending, and edgewise bending, are obtained by the Euler angle descriptions. The power series method is then used to inves- tigate the natural frequencies and the corresponding complex mode functions. It is found that all the natural frequencies are increased by the centrifugal stiffening except the twist frequency, which is slightly decreased. The tapering ratio increases the first transverse, torsional, and axial frequencies, while decreases the second transverse frequency. Because of the pre-twist, all the directions are gyroscopically coupled with the phase differences among the six degrees. 展开更多
关键词 rotating Timoshenko beam power series method natural frequency gyro-scopic coupling
下载PDF
Large deformation analysis of a cantilever beam made of axially functionally graded material by homotopy analysis method 被引量:2
12
作者 Xin LIN Yixin HUANG +1 位作者 Yang ZHAO Tianshu WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第10期1375-1386,共12页
Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the... Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the longitudinal direction according to a power law. Taking the solution of the corresponding homogeneous beam as the initial guess and obtaining a convergence region by adjusting an auxiliary parameter, the analytical expressions for large deformation of the AFG beam are provided. Results obtained by the HAM are compared with those obtained by the finite element method and those in the previous works to verify its validity. Good agreement is observed. A detailed parametric study is carried out. The results show that the axial material variation can greatly change the deformed configuration, which provides an approach to control and manage the deformation of beams. By tailoring the axial material distribution, a desired deformed configuration can be obtained for a specific load. The analytical solution presented herein can be a helpful tool for this procedure. 展开更多
关键词 large deformation beam AXIALLY functionally GRADED (AFG) material Euler-Bernoulli beam HOMOTOPY ANALYSIS method (HAM)
下载PDF
A node-based smoothed point interpolation method for dynamic analysis of rotating flexible beams 被引量:3
13
作者 C.F.Du D.G.Zhang +1 位作者 L.Li G.R.Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期409-420,共12页
We proposed a mesh-free method, the called node-based smoothed point interpolation method(NS-PIM),for dynamic analysis of rotating beams. A gradient smoothing technique is used, and the requirements on the consistence... We proposed a mesh-free method, the called node-based smoothed point interpolation method(NS-PIM),for dynamic analysis of rotating beams. A gradient smoothing technique is used, and the requirements on the consistence of the displacement functions are further weakened. In static problems, the beams with three types of boundary conditions are analyzed, and the results are compared with the exact solution, which shows the effectiveness of this method and can provide an upper bound solution for the deflection.This means that the NS-PIM makes the system soften. The NS-PIM is then further extended for solving a rigid-flexible coupled system dynamics problem, considering a rotating flexible cantilever beam. In this case, the rotating flexible cantilever beam considers not only the transverse deformations,but also the longitudinal deformations. The rigid-flexible coupled dynamic equations of the system are derived via employing Lagrange’s equations of the second type. Simulation results of the NS-PIM are compared with those obtained using finite element method(FEM) and assumed mode method. It is found that compared with FEM, the NS-PIM has anti-ill solving ability under the same calculation conditions. 展开更多
关键词 Meshfree method NS-PIM Rigid-flexible coupled system dynamics Rotating beams Dynamic response
下载PDF
Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method 被引量:3
14
作者 Keivan Kiani Ali Nikkhoo Bahman Mehri 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第5期721-733,共13页
Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatia... Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces. 展开更多
关键词 Moving mass-beam interaction - Multispan viscoelastic beam Euler-Bernoulli beam Generalized moving least square method (GMLSM)
下载PDF
Principles of the roof cut short-arm beam mining method (110 method) and its mining-induced stress distribution 被引量:12
15
作者 Tao Zhigang Song Zhigang +2 位作者 He Manchao Meng Zhigang Pang Shihui 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期391-396,共6页
Since the 1960 s, mining science and technology in China has experienced two technical innovations, i.e.the ‘‘Masonry Beam Theory(MBT)" and ‘‘Transfer Rock Beam Theory(TRBT)". Based on those theories, th... Since the 1960 s, mining science and technology in China has experienced two technical innovations, i.e.the ‘‘Masonry Beam Theory(MBT)" and ‘‘Transfer Rock Beam Theory(TRBT)". Based on those theories, the conventional mining method(being called the 121 mining method) was established, consisting of excavating two tunnels with a pillar left for mining a working panel. However, with increasing mining depth,engineering geological disasters in the underground caverns have been frequently encountered. In addition, the use of the coal-pillar mining results in a large amount of coal resources unexploited. In order to address the problems above, the ‘‘Roof Cut Short-Arm Beam Theory(RCSBT), being called the 110 mining method)" was proposed by He Manchao in 2008. The 110 mining method features the mining of one coal seam panel, excavating necessarily only one roadway tunnel and leaving no pillars. Realization of the 110 mining method includes the following steps:(1) directional pre-splitting roof cutting,(2) supporting the roof by using high Constant Resistance Large Deformation bolt/cable(CRLD), and(3) blocking gangue by hydraulic props. This paper presents an overview of the principles, techniques and application of the 110 mining method. Special emphasis is placed on the numerical simulation of the geostress distribution found in the mining panel using the 110 method compared to that of the 121 method. In addition, the stress distribution on the ‘‘short beam" left by the roof cutting when performing the 110 method was also investigated using both numerical simulation and theoretical formulation. 展开更多
关键词 Mining innovation 121 mining method Cutting cantilever beam theory Non-pillar mining 110 mining method
下载PDF
Determination of the natural frequencies of axially moving beams by the method of multiple scales 被引量:3
16
作者 杨晓东 陈立群 《Journal of Shanghai University(English Edition)》 CAS 2007年第3期251-254,共4页
The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial mot... The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small. 展开更多
关键词 the method of multiple scales natural frequency axially moving beam
下载PDF
Method of reverberation ray matrix for static analysis of planar framed structures composed of anisotropic Timoshenko beam members 被引量:2
17
作者 Jiao ZHANG Guohua NIE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第2期233-242,共10页
Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for st... Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures. 展开更多
关键词 planar framed structure ANISOTROPIC Timenshenko(T) beam stiffness matrix method of reverberation ray matrix(MRRM) static analysis
下载PDF
Full-vectorial finite-difference beam propagation method based on the modified alternating direction implicit method 被引量:1
18
作者 肖金标 孙小菡 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第8期1824-1830,共7页
A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first ... A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method. 展开更多
关键词 beam propagation method alternating direction implicit algorithm finite difference optical waveguides integrated optics
下载PDF
Analysis of regular and chaotic dynamics of the Euler-Bernoulli beams using finite difference and finite element methods 被引量:3
19
作者 J.Awrejcewicz A.V.Krysko +2 位作者 J.Mrozowski O.A.Saltykova M.V.Zhigalov 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第1期36-43,共8页
Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained result... Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated. 展开更多
关键词 Euler-Bernoulli beams · Chaos · Finite differ-ence method · Finite element method
下载PDF
Buckling analysis of nanobeams with exponentially varying stiffness by differential quadrature method 被引量:1
20
作者 S Chakraverty Laxmi Behera 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期218-227,共10页
We present the application of differential quadrature(DQ) method for the buckling analysis of nanobeams with exponentially varying stiffness based on four different beam theories of Euler-Bernoulli, Timoshenko, Redd... We present the application of differential quadrature(DQ) method for the buckling analysis of nanobeams with exponentially varying stiffness based on four different beam theories of Euler-Bernoulli, Timoshenko, Reddy, and Levison.The formulation is based on the nonlocal elasticity theory of Eringen. New results are presented for the guided and simply supported guided boundary conditions. Numerical results are obtained to investigate the effects of the nonlocal parameter,length-to-height ratio, boundary condition, and nonuniform parameter on the critical buckling load parameter. It is observed that the critical buckling load decreases with increase in the nonlocal parameter while the critical buckling load parameter increases with increase in the length-to-height ratio. 展开更多
关键词 differential quadrature method exponentially varying stiffness different beam theories
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部