We construct a circuit based on PBS and CNOT gates, which can be used to determine whether the input pulse is empty or not according to the detection result of the auxiliary state, while the input state will not be ch...We construct a circuit based on PBS and CNOT gates, which can be used to determine whether the input pulse is empty or not according to the detection result of the auxiliary state, while the input state will not be changed. The circuit can be treated as a pre-detection device. Equipping the pre-detection device in the front of the receiver of the quantum key distribution (QKD) can reduce the influence of the dark count of the detector, hence increasing the secure communication distance significantly. Simulation results show that the secure communication distance can reach 516 km and 479 km for QKD with perfect single photon source and decoy-state QKD with weak coherent photon source, respectively.展开更多
The progress of a microbeam facility in the Institute of Plasma Physics was discussed in this paper. This kind of equipment can supply single-particle beam which may be implanted into cells in micrometer-radius and me...The progress of a microbeam facility in the Institute of Plasma Physics was discussed in this paper. This kind of equipment can supply single-particle beam which may be implanted into cells in micrometer-radius and measured by a new outstanding detector among global microbeam systems. Measurements by some plain targets showed that the highest current after the accelerator tube can be larger than 20 /μA, the H_2^+ current before the second bending magnet is near 0.9 /μA, the current after the second bending magnet is near 0.8 μA, and the current of the beam line (after a 2-mm diameter aperture) is near 0.25 nA which is enough for the single-particle microbeam experiment. It took scientists 3 months to do their microbeam experiment after setting up the accelerator beam line and get the microbeam from this equipment. Two pre-collimators were installed between the 2-mm diameter aperture and the collimator to survey the beam. Tracks on the CR39 film etched in the solution of NaOH showed that the beam can go through the collimator including a 10 μm diameter aperture and the 3.5 μm thick vacuum sealing film (Mylar). A new method, which is called optimization of the beam quality, was put forward in this paper, in order to get smaller diameter of beam-spot in microbeam system.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61372076)the Programme of Introducing Talents of Discipline to Universities,China(Grant No.B08038)the Fundamental Research Funds for the Central Universities,China(Grant No.K5051201021)
文摘We construct a circuit based on PBS and CNOT gates, which can be used to determine whether the input pulse is empty or not according to the detection result of the auxiliary state, while the input state will not be changed. The circuit can be treated as a pre-detection device. Equipping the pre-detection device in the front of the receiver of the quantum key distribution (QKD) can reduce the influence of the dark count of the detector, hence increasing the secure communication distance significantly. Simulation results show that the secure communication distance can reach 516 km and 479 km for QKD with perfect single photon source and decoy-state QKD with weak coherent photon source, respectively.
基金The project supported by the Natural Science Foundation Committee in Anhui Province, China (No. 01046201)
文摘The progress of a microbeam facility in the Institute of Plasma Physics was discussed in this paper. This kind of equipment can supply single-particle beam which may be implanted into cells in micrometer-radius and measured by a new outstanding detector among global microbeam systems. Measurements by some plain targets showed that the highest current after the accelerator tube can be larger than 20 /μA, the H_2^+ current before the second bending magnet is near 0.9 /μA, the current after the second bending magnet is near 0.8 μA, and the current of the beam line (after a 2-mm diameter aperture) is near 0.25 nA which is enough for the single-particle microbeam experiment. It took scientists 3 months to do their microbeam experiment after setting up the accelerator beam line and get the microbeam from this equipment. Two pre-collimators were installed between the 2-mm diameter aperture and the collimator to survey the beam. Tracks on the CR39 film etched in the solution of NaOH showed that the beam can go through the collimator including a 10 μm diameter aperture and the 3.5 μm thick vacuum sealing film (Mylar). A new method, which is called optimization of the beam quality, was put forward in this paper, in order to get smaller diameter of beam-spot in microbeam system.