The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the...The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the key expansive structure,this paper proposes a novel type of bolt—the Ductile-Expansion bolt,and conducts research on anchoring mechanics,energy absorption characteristics,and failure modes of the bolt.In addition,this paper defines the concept of load-volume ratio of metal rock bolts and proves the Ductile-Expansion bolt is capable of better improving the unit volume bearing capacity of the bolt material.Furthermore,laboratory and field tests verify the Ductile-Expansion bolt had better anchoring effect than the traditional rebar bolt,with the expansion structure favorably enhancing the ductility and energy absorption performance of the bolt.Finally,this paper microscopically analyzes the crack propagation and distribution morphology of the bolts by establishing a 3D coupled numerical model based on FDM-DEM.Numerical results illustrate the interface at the variable diameter of the Ductile-Expansion bolt serves as the transition zone between high and low stress levels.The expansion structure can impose radial compression on the medium around the bolt,which can improve the bolt anchorage performance.展开更多
This study compares the strength characteristics of rocks anchored by NPR bolts and ordinary bolts with varied preloads,based on the mechanical properties of NPR bolts(with a negative Poisson’s ratio).The results sho...This study compares the strength characteristics of rocks anchored by NPR bolts and ordinary bolts with varied preloads,based on the mechanical properties of NPR bolts(with a negative Poisson’s ratio).The results show that the uniaxial compressive stress-strain curve of ordinary anchored rocks exhibits noticeable abrupt changes.After reaching peak strength,the bolt breaks,whereas the stress-strain curve of NPR-anchored rocks is smoother.The NPR bolt enters the stage of continuous resistance after reaching maximal strength and does not break.As the preload increases,the strength of the anchored rock grows linearly.A calculation equation for the strength of the anchored rock is proposed based on the preload.The theoretical equation fits the test results well,and the fitted parameters show that NPR bolts can better increase the strength of the rock.The concept of dynamic toughness UC of anchored rock is proposed to reflect the comprehensive mechanical properties of anchored rock,including strength and plasticity.As the preload increases,the UC of ordinary anchored rock first decreases and then increases,while the UC of the NPR anchored rock does not change significantly with the preload when the strain is small,and the UC increases with the increase of the preload when the strain is large.展开更多
To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,th...To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree.展开更多
The anchoring eccentricity of the bolt and cable bolt is a common problem in geotechnical support engineering and affects the ability of the bolt and cable bolt to control the rock mass to a certain extent.This paper ...The anchoring eccentricity of the bolt and cable bolt is a common problem in geotechnical support engineering and affects the ability of the bolt and cable bolt to control the rock mass to a certain extent.This paper reports on numerical simulation and laboratory experiments conducted to clarify the effect of eccentricity on the anchoring quality of the bolt and cable bolt,and to establish an effective solution strategy.The results reveal that the anchoring eccentricity causes unbalanced stress distribution and the uncoordinated deformation of the resin layer,which results in higher stress and greater deformation of the resin layer at the near side of the rod body.Additionally,as the degree of anchoring eccentricity increases,the effect becomes more significant,and the resin layer of the anchoring system becomes more likely to undergo preferential failure locally,which weakens the load-bearing performance of the anchoring system.This paper develops an innovative bolt anchoring rectifying device(B-ARD)and cable bolt anchoring rectifying device(C-ARD)on the basis of the structural characteristics of the bolt and cable bolt to better ensure the anchoring effect of them.The working effects of these two devices were verified in detailed experiments and analysis.The experimental results show that the anchoring rectifying devices(ARD)improve and ensure the anchoring concentricity of the bolt and cable bolt,which will help improve the supporting performance of them.The paper provides a convenient and effective method for improving the anchoring concentricity of the bolt and cable bolt,and provides a concept and reference for technical research on improving the effect of roof bolting.展开更多
Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expre...Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.展开更多
In order to obtain the optimal parameters of anchor bolt supporting system for large-span and jointed rock mass in Kaiyang Phosphor Mine, it is expensive and unavailable with the method of in-situ experiments. This pa...In order to obtain the optimal parameters of anchor bolt supporting system for large-span and jointed rock mass in Kaiyang Phosphor Mine, it is expensive and unavailable with the method of in-situ experiments. This paper describes a numerical modeling with discrete element method for the supporting effects of different type of anchor bolts. The anchor bolts with variant length of 0.5m, 0.8m, 1.0m, diameter of 10mm, 15mm, 20mm, setting spacing of 3.0m, 2.5m, 2.0m, and setting angle of 10°, 20°, 30°, are simulated respectively. The results show that there exist optimal parameters of anchor bolt support for large-span and jointed rock mass. For the bolt support of the concerning, the optimal length is 2.53.5m, the diameter is 2535mm, the spacing is 0.50.6m, and the setting angle is 105°.展开更多
Anchor bolts are commonly used throughout underground mining and tunnelling operations to improve roof stability.However,premature failures of anchor bolts are significant safety risks in underground excavations aroun...Anchor bolts are commonly used throughout underground mining and tunnelling operations to improve roof stability.However,premature failures of anchor bolts are significant safety risks in underground excavations around the world due to susceptible bolt materials,a moist and corrosive environment and tensile stress.In this paper,laboratory experiments and hydrogeochemical models were combined to investigate anchor bolt corrosion and failure associated with aqueous environments in underground coal mines.Experimental data and collated mine water chemistry data were used to simulate bolt corrosion reactions with groundwater and rock materials with the PHREEQC code.A series of models quantified reactions involving iron and carbon under aerobic and anaerobic conditions in comparison with ion,pH and pE trends in experimental data.The models showed that corrosion processes are inhibited by some natural environmental factors,because dissolved oxygen would cause more iron from the bolts to oxidize into solution.These interdisciplinary insights into corrosion failure of underground anchor bolts confirm that environmental factors are important contributors to stress corrosion cracking.展开更多
Based on one-dimension wave theory, the propagation law of elastic wave along the rock bolt, rock medium and their coupling system are researched, and the attenuation law and propagation mechanism of wave in the ancho...Based on one-dimension wave theory, the propagation law of elastic wave along the rock bolt, rock medium and their coupling system are researched, and the attenuation law and propagation mechanism of wave in the anchoring system are obtained. Meanwhile, the studies on end reflection and dynamic response under load are also carried out experimentally, the relationship between anchoring length and excited wave length is obtained when the end reflection of holt emerges, and it is concluded that under the condition of bolt loaded, as the load increases, the reflection of the upper interface of anchoring segment weakens while the end reflection strengthens relatively, hence the energy attenuation increases. These results provide some important theory basis for measuring the effective anchoring length of bolt, judging the bonding quality of anchoring end and surrounding rock, and estimating the utmost load force of bolt.展开更多
The paper analyses quantitatively the anchoring effect of tensioned bolts on surrounding rock strength, and defines two concepts: one is the surrounding rock strength increased amount Δτ13 and the other is the stren...The paper analyses quantitatively the anchoring effect of tensioned bolts on surrounding rock strength, and defines two concepts: one is the surrounding rock strength increased amount Δτ13 and the other is the strength influence factor k. The anchoring effect of tensioned bolts is considered to increase a strength increased amount Δτ13 where Δτ13 is the product k and ten-sioned load p, i. e. Δτ13 = kp, where k is a function of two variables x and y. The distribu-tive properties both Δτ13 and k are also discussed in the paper, obtaining some useful results for designing bolting support parameters.展开更多
The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting...The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting results are briefly summarized.展开更多
The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin ...The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin rock bolt. The stress distribution characteristic is different according to different type of surrounding rock. The conclusion is important to optimize the roadway bolt support design.展开更多
The mixed model of improved exponential and power function and unequal interval gray GM(1,1)model have poor accuracy in predicting the maximum pull-out load of anchor bolts.An optimal combination model was derived usi...The mixed model of improved exponential and power function and unequal interval gray GM(1,1)model have poor accuracy in predicting the maximum pull-out load of anchor bolts.An optimal combination model was derived using the optimally weighted combination theory and the minimum sum of logarithmic squared errors as the objective function.Two typical anchor bolt pull-out engineering cases were selected to compare the performance of the proposed model with those of existing ones.Results showed that the optimal combination model was suitable not only for the slow P-s curve but also for the steep P-s curve.Its accuracy and stable reliability,as well as its prediction capability classification,were better than those of the other prediction models.Therefore,the optimal combination model is an effective processing method for predicting the maximum pull-out load of anchor bolts according to measured data.展开更多
To solve the deficiency of steel anchor blot in corrosion resistance and flaw of GFRP anchor bolt in fracture resistance, our research group develops a new composite anchor bolt made of steel strands wrapped up with c...To solve the deficiency of steel anchor blot in corrosion resistance and flaw of GFRP anchor bolt in fracture resistance, our research group develops a new composite anchor bolt made of steel strands wrapped up with compound fiber resin. To improve the cohesion performance of the composite anchor bolt, pull-out tests of different composite anchor bolts with different groove intervals and depths were made and analyzed. The results show that the pulling resistance of the composite anchor bolt increases with the increase of groove interval and depth, but groove interval and depth have optimal value. Based on elastic mechanics, the cohesion between anchor bolts and anchor bodies and its distribution characteristics caused by axial tension are analyzed and cohesion formula is obtained. By contrast, the experimental result is consistent with the theoretical analysis. Therefore, the surficial change of anchor colts could influence the performance of the composite anchor bolt. The cohesion force and anchorage performance can be improved by changing the surface of anchor bolts. Research results show that the new composite anchor bolt is high-performance material in the civil engineering.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52174101,52474169,and 42477202)Guangdong Basic and Applied Basic Research Foundation(Nos.2023A1515011634 and 2023A1515030243)the Department of Science and Technology of Guangdong Province,China(No.2021ZT09G087).
文摘The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the key expansive structure,this paper proposes a novel type of bolt—the Ductile-Expansion bolt,and conducts research on anchoring mechanics,energy absorption characteristics,and failure modes of the bolt.In addition,this paper defines the concept of load-volume ratio of metal rock bolts and proves the Ductile-Expansion bolt is capable of better improving the unit volume bearing capacity of the bolt material.Furthermore,laboratory and field tests verify the Ductile-Expansion bolt had better anchoring effect than the traditional rebar bolt,with the expansion structure favorably enhancing the ductility and energy absorption performance of the bolt.Finally,this paper microscopically analyzes the crack propagation and distribution morphology of the bolts by establishing a 3D coupled numerical model based on FDM-DEM.Numerical results illustrate the interface at the variable diameter of the Ductile-Expansion bolt serves as the transition zone between high and low stress levels.The expansion structure can impose radial compression on the medium around the bolt,which can improve the bolt anchorage performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.52174096 and 51874311)。
文摘This study compares the strength characteristics of rocks anchored by NPR bolts and ordinary bolts with varied preloads,based on the mechanical properties of NPR bolts(with a negative Poisson’s ratio).The results show that the uniaxial compressive stress-strain curve of ordinary anchored rocks exhibits noticeable abrupt changes.After reaching peak strength,the bolt breaks,whereas the stress-strain curve of NPR-anchored rocks is smoother.The NPR bolt enters the stage of continuous resistance after reaching maximal strength and does not break.As the preload increases,the strength of the anchored rock grows linearly.A calculation equation for the strength of the anchored rock is proposed based on the preload.The theoretical equation fits the test results well,and the fitted parameters show that NPR bolts can better increase the strength of the rock.The concept of dynamic toughness UC of anchored rock is proposed to reflect the comprehensive mechanical properties of anchored rock,including strength and plasticity.As the preload increases,the UC of ordinary anchored rock first decreases and then increases,while the UC of the NPR anchored rock does not change significantly with the preload when the strain is small,and the UC increases with the increase of the preload when the strain is large.
基金Project(2019SDZY02)supported by the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research Development Program,ChinaProject(51904165)supported by the National Natural Science Foundation of ChinaProject(ZR2019QEE026)supported by the Shandong Provincial Natural Science Foundation,China。
文摘To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree.
基金This study was supported by the National Natural Science Foundation of China(No.52074102)Foundation for Distinguished Young Talents in Higher Education of Henan(No.212300410006)+1 种基金Foundation for the Science and Technology Innovation Talents Project of Universities in Henan(No.22HASTIT010)Special Funds for Fundamental Scientific Research Expenses of Universities in Henan(No.NSFRF210202).
文摘The anchoring eccentricity of the bolt and cable bolt is a common problem in geotechnical support engineering and affects the ability of the bolt and cable bolt to control the rock mass to a certain extent.This paper reports on numerical simulation and laboratory experiments conducted to clarify the effect of eccentricity on the anchoring quality of the bolt and cable bolt,and to establish an effective solution strategy.The results reveal that the anchoring eccentricity causes unbalanced stress distribution and the uncoordinated deformation of the resin layer,which results in higher stress and greater deformation of the resin layer at the near side of the rod body.Additionally,as the degree of anchoring eccentricity increases,the effect becomes more significant,and the resin layer of the anchoring system becomes more likely to undergo preferential failure locally,which weakens the load-bearing performance of the anchoring system.This paper develops an innovative bolt anchoring rectifying device(B-ARD)and cable bolt anchoring rectifying device(C-ARD)on the basis of the structural characteristics of the bolt and cable bolt to better ensure the anchoring effect of them.The working effects of these two devices were verified in detailed experiments and analysis.The experimental results show that the anchoring rectifying devices(ARD)improve and ensure the anchoring concentricity of the bolt and cable bolt,which will help improve the supporting performance of them.The paper provides a convenient and effective method for improving the anchoring concentricity of the bolt and cable bolt,and provides a concept and reference for technical research on improving the effect of roof bolting.
基金support by the National Natural Science Foundation of China (No.51174195)the Fundamental Research Funds for the Central Universities of China (No.2010QNA31)
文摘Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.
文摘In order to obtain the optimal parameters of anchor bolt supporting system for large-span and jointed rock mass in Kaiyang Phosphor Mine, it is expensive and unavailable with the method of in-situ experiments. This paper describes a numerical modeling with discrete element method for the supporting effects of different type of anchor bolts. The anchor bolts with variant length of 0.5m, 0.8m, 1.0m, diameter of 10mm, 15mm, 20mm, setting spacing of 3.0m, 2.5m, 2.0m, and setting angle of 10°, 20°, 30°, are simulated respectively. The results show that there exist optimal parameters of anchor bolt support for large-span and jointed rock mass. For the bolt support of the concerning, the optimal length is 2.53.5m, the diameter is 2535mm, the spacing is 0.50.6m, and the setting angle is 105°.
基金Project(140100153)supported by Australian Research Council Linkage Grant。
文摘Anchor bolts are commonly used throughout underground mining and tunnelling operations to improve roof stability.However,premature failures of anchor bolts are significant safety risks in underground excavations around the world due to susceptible bolt materials,a moist and corrosive environment and tensile stress.In this paper,laboratory experiments and hydrogeochemical models were combined to investigate anchor bolt corrosion and failure associated with aqueous environments in underground coal mines.Experimental data and collated mine water chemistry data were used to simulate bolt corrosion reactions with groundwater and rock materials with the PHREEQC code.A series of models quantified reactions involving iron and carbon under aerobic and anaerobic conditions in comparison with ion,pH and pE trends in experimental data.The models showed that corrosion processes are inhibited by some natural environmental factors,because dissolved oxygen would cause more iron from the bolts to oxidize into solution.These interdisciplinary insights into corrosion failure of underground anchor bolts confirm that environmental factors are important contributors to stress corrosion cracking.
文摘Based on one-dimension wave theory, the propagation law of elastic wave along the rock bolt, rock medium and their coupling system are researched, and the attenuation law and propagation mechanism of wave in the anchoring system are obtained. Meanwhile, the studies on end reflection and dynamic response under load are also carried out experimentally, the relationship between anchoring length and excited wave length is obtained when the end reflection of holt emerges, and it is concluded that under the condition of bolt loaded, as the load increases, the reflection of the upper interface of anchoring segment weakens while the end reflection strengthens relatively, hence the energy attenuation increases. These results provide some important theory basis for measuring the effective anchoring length of bolt, judging the bonding quality of anchoring end and surrounding rock, and estimating the utmost load force of bolt.
文摘The paper analyses quantitatively the anchoring effect of tensioned bolts on surrounding rock strength, and defines two concepts: one is the surrounding rock strength increased amount Δτ13 and the other is the strength influence factor k. The anchoring effect of tensioned bolts is considered to increase a strength increased amount Δτ13 where Δτ13 is the product k and ten-sioned load p, i. e. Δτ13 = kp, where k is a function of two variables x and y. The distribu-tive properties both Δτ13 and k are also discussed in the paper, obtaining some useful results for designing bolting support parameters.
文摘The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting results are briefly summarized.
文摘The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin rock bolt. The stress distribution characteristic is different according to different type of surrounding rock. The conclusion is important to optimize the roadway bolt support design.
基金The National Natural Science Foundation of China(No.51778485).
文摘The mixed model of improved exponential and power function and unequal interval gray GM(1,1)model have poor accuracy in predicting the maximum pull-out load of anchor bolts.An optimal combination model was derived using the optimally weighted combination theory and the minimum sum of logarithmic squared errors as the objective function.Two typical anchor bolt pull-out engineering cases were selected to compare the performance of the proposed model with those of existing ones.Results showed that the optimal combination model was suitable not only for the slow P-s curve but also for the steep P-s curve.Its accuracy and stable reliability,as well as its prediction capability classification,were better than those of the other prediction models.Therefore,the optimal combination model is an effective processing method for predicting the maximum pull-out load of anchor bolts according to measured data.
文摘To solve the deficiency of steel anchor blot in corrosion resistance and flaw of GFRP anchor bolt in fracture resistance, our research group develops a new composite anchor bolt made of steel strands wrapped up with compound fiber resin. To improve the cohesion performance of the composite anchor bolt, pull-out tests of different composite anchor bolts with different groove intervals and depths were made and analyzed. The results show that the pulling resistance of the composite anchor bolt increases with the increase of groove interval and depth, but groove interval and depth have optimal value. Based on elastic mechanics, the cohesion between anchor bolts and anchor bodies and its distribution characteristics caused by axial tension are analyzed and cohesion formula is obtained. By contrast, the experimental result is consistent with the theoretical analysis. Therefore, the surficial change of anchor colts could influence the performance of the composite anchor bolt. The cohesion force and anchorage performance can be improved by changing the surface of anchor bolts. Research results show that the new composite anchor bolt is high-performance material in the civil engineering.