针对传统的时频域故障诊断方法无法对故障实现自适应识别和分类,且准确率较低的问题,提出一种基于改进信息熵(improved information entropy,IIE)的长短时记忆网络(long-short time memory network,LSTM)方法。首先对原始信号分别进行...针对传统的时频域故障诊断方法无法对故障实现自适应识别和分类,且准确率较低的问题,提出一种基于改进信息熵(improved information entropy,IIE)的长短时记忆网络(long-short time memory network,LSTM)方法。首先对原始信号分别进行集合经验模态分解(ensemble empirical mode decomposition,EEMD)和变分模态分解(variational mode decomposition,VMD);将包含故障信息的所有本征模式分量(intrinsic mode functions,IMF)进行信息熵的求取;通过信息熵反映IMF的信息量和峭度指标对描述冲击成分的优势改进信息熵,构成特征向量;最后结合LSTM处理非线性数据的优势,利用组合特征训练LSTM网络建立诊断模型。实验结果表明:该方法能准确、高效地识别多种故障,准确率要比单一的EEMD-LSTM、VMD-LSTM、人工神经网络等传统方法更高。展开更多
电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依...电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依据。在此基础上,提出了基于Attention-LSTM (attention long short-term memory,Attention-LSTM)网络的短期负荷预测模型。该模型充分利用负荷的时序特性,并采用Attention机制突出对负荷预测起到关键作用的输入特征。以澳大利亚某地区真实数据为算例,分别应用Attention-LSTM模型与其他模型进行仿真实验。结果表明,所提方法在预测精度和算法鲁棒性方面均优于其他模型。展开更多
文摘电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依据。在此基础上,提出了基于Attention-LSTM (attention long short-term memory,Attention-LSTM)网络的短期负荷预测模型。该模型充分利用负荷的时序特性,并采用Attention机制突出对负荷预测起到关键作用的输入特征。以澳大利亚某地区真实数据为算例,分别应用Attention-LSTM模型与其他模型进行仿真实验。结果表明,所提方法在预测精度和算法鲁棒性方面均优于其他模型。