Determining the distributions and sources of heavy metals in soils and assessing ecological risks are fundamental tasks in the control and management of pollution in mining areas.In this study,we selected 244 sampling...Determining the distributions and sources of heavy metals in soils and assessing ecological risks are fundamental tasks in the control and management of pollution in mining areas.In this study,we selected 244 sampling sites around a typical lead(Pb)and zinc(Zn)mining area in eastern Inner Mongolia Autonomous Region of China and measured the content of six heavy metals,including cuprum(Cu),Zn,Pb,arsenic(As),cadmium(Cd),and chromium(Cr).The ecological risk of heavy metals was comprehensively evaluated using the Geo-accumulation index,Nemerow general pollution index,and potential ecological risk index.The heavy metals were traced using correlation analysis and principal component analysis.The results showed that the highest content of heavy metals was found in 0–5 cm soil layer in the study area.The average content of Zn,As,Pb,Cu,Cr,and Cd was 670,424,235,162,94,and 4 mg/kg,respectively,all exceeding the risk screening value of agricultural soil in China.The areas with high content of soil heavy metals were mainly distributed near the tailings pond.The study area was affected by a combination of multiple heavy metals,with Cd and As reaching severe pollution levels.The three pathways of exposure for carcinogenic and noncarcinogenic risks were ranked as inhalation>oral ingestion>dermal absorption.The heavy metals in the study area posed certain hazards to human health.Specifically,oral ingestion of these heavy metals carried carcinogenic risks for both children and adults,as well as noncarcinogenic risks for children.There were differences in the sources of different heavy metals.The tailings pond had a large impact on the accumulation of Cd,Zn,and Pb.The source of Cr was the soil parent material,the source of As was mainly the soil matrix,and the source of Cu was mainly the nearby Cu ore.The purpose of this study is to more accurately understand the extent,scope,and source of heavy metals pollution near a typical mining area,providing effective help to solve the problem of heavy metals pollution.展开更多
[Objective] The research aimed to reduce emission load of the farmland runoff by using ecological ditches and pond. [Method] N and P intercepting project construction of the ecological ditches and pond in Zhaiji Villa...[Objective] The research aimed to reduce emission load of the farmland runoff by using ecological ditches and pond. [Method] N and P intercepting project construction of the ecological ditches and pond in Zhaiji Village, Xiangcheng District, Suzhou City as research object, by repairing 1 834 m3 of original drainage ditches, newly excavating 6 800 m2 of ecological main ditches and 6 000 m2 of artificial purification ecological pond, etc., runoff emission load in real control area of the project was counted. [Result] Annual net loads of the runoff emission for TN and TP were respectively 2 552.22 and 95.00 kg in 33.3 hm2 of farmland. Annual runoff intercepting loads of TN and TP were respectively 1 225.07 and 50.35 kg in ditches. Annual runoff intercepting loads of TN and TP were respectively 1 327.15 and 44.65 kg in ecological pond. In effluent, TN concentration was 6.32 mg/L and was smaller than 15 mg/L. TP concentration was 0.25 mg/L and was smaller than 0.5 mg/L. They both reached level-one A discharge standard. [Conclusion] The research provided theoretical basis for effective control of the agricultural non-point source pollution in Taihu Lake basin.展开更多
The trace elements chemistry of Bartlett Pond, a small shallow wetland pond in Laredo, Southern Texas, was sampled to evaluate the dynamics of trace elements impacts on water quality and ecosystems ecology of the pond...The trace elements chemistry of Bartlett Pond, a small shallow wetland pond in Laredo, Southern Texas, was sampled to evaluate the dynamics of trace elements impacts on water quality and ecosystems ecology of the pond. Two types of fish (bass and tilapia) were also sampled to see the trace element accumulation in different parts of their body. The concentrations of trace elements in water samples were found in the following order: Fe ≫Sb > Pb > As ≫Co > Tl > Cr > Cd within Bartlett Pond. Overall, the water quality of the pond is unacceptable for drinking and any other purposes as trace element concentrations (e.g. As, Cd, Co, Cr, Pb, Fe, Sb and Tl) are exceedingly higher (several fold) than the WHO and US EPA guidelines. Predictive and correlation analysis shows that most trace elements exhibit a strong positive correlation among them indicating the same anthropogenic sources and biogeochemical processes regulate these trace elements within the pond. Distributions of the trace elements in water exhibit different shapes mostly as positively skewed distribution for As, Cd, Co, Cr, and Tl, symmetrical distribution for Fe and almost symmetrical distribution for Pb and Sb. Concentrations of As, Co and Tl accumulated much higher in different parts of the Bass than Tilapia fish. The concentrations of As, Tl, Co, and Sb appeared significantly higher in different parts of the body of both Bass and Tilapia than the maximum SRM certified values. Accumulation of these contaminants in fish tissues pose increased health risks to humans who consume these contaminated fish although fishing is prohibited. Anthropogenic activities in the region primarily degrade the whole pond ecosystem ecology of the Bartlett Pond and waters of this pond to be not recommended for any use. These findings may be useful for the scientific community and concerned authorities to improve understanding about these precious natural resources and conservation of the ecosystem ecology.展开更多
[Objectives]To explore the ecological aquaculture model in ponds in North China,several single techniques were assembled into the same culture system.[Methods]Three ponds were selected,the species and stocking rate we...[Objectives]To explore the ecological aquaculture model in ponds in North China,several single techniques were assembled into the same culture system.[Methods]Three ponds were selected,the species and stocking rate were exactly the same,the water was not changed during the culture period,and the water loss due to evaporation and leakage was recovered.Since the middle of May,the hydrochemical indicators such as ammonia nitrogen,nitrite nitrogen,water temperature,dissolved oxygen and pH were monitored every 10 d.According to the monitoring results of ammonia nitrogen,carbon sources were added to the culture ponds to adjust the ratio of C to N,and carbon sources were added 9 times during the culture period.The stocking rate and yield per unit area were accurately measured at the beginning and end of the experiment,and no less than 30 fishes were randomly sampled to calculate the relevant growth indicators and feed coefficients.[Results]Except that the nonionic ammonia in pond 3#exceeded the standard by 10.3%on July 25,all other hydrochemical indicators met the Fisheries Water Quality Standard,and there was no significant difference in all hydrochemical indicators at the same time(P>0.05).The survival rate in 3 ponds was more than 95.0%,the average body weight of individuals out of the pond had no difference(P>0.05),and the feed coefficient was 1.41-1.43.There was no disease during the culture period,and the water was saved by 46.6%compared with the traditional culture model.[Conclusions]This study can provide a basis for the construction of a new model suitable for ecological aquaculture in ponds in North China.展开更多
基金supported by the Inner Mongolia Autonomous Region Major Science and Technology Special Project (2019ZD001).
文摘Determining the distributions and sources of heavy metals in soils and assessing ecological risks are fundamental tasks in the control and management of pollution in mining areas.In this study,we selected 244 sampling sites around a typical lead(Pb)and zinc(Zn)mining area in eastern Inner Mongolia Autonomous Region of China and measured the content of six heavy metals,including cuprum(Cu),Zn,Pb,arsenic(As),cadmium(Cd),and chromium(Cr).The ecological risk of heavy metals was comprehensively evaluated using the Geo-accumulation index,Nemerow general pollution index,and potential ecological risk index.The heavy metals were traced using correlation analysis and principal component analysis.The results showed that the highest content of heavy metals was found in 0–5 cm soil layer in the study area.The average content of Zn,As,Pb,Cu,Cr,and Cd was 670,424,235,162,94,and 4 mg/kg,respectively,all exceeding the risk screening value of agricultural soil in China.The areas with high content of soil heavy metals were mainly distributed near the tailings pond.The study area was affected by a combination of multiple heavy metals,with Cd and As reaching severe pollution levels.The three pathways of exposure for carcinogenic and noncarcinogenic risks were ranked as inhalation>oral ingestion>dermal absorption.The heavy metals in the study area posed certain hazards to human health.Specifically,oral ingestion of these heavy metals carried carcinogenic risks for both children and adults,as well as noncarcinogenic risks for children.There were differences in the sources of different heavy metals.The tailings pond had a large impact on the accumulation of Cd,Zn,and Pb.The source of Cr was the soil parent material,the source of As was mainly the soil matrix,and the source of Cu was mainly the nearby Cu ore.The purpose of this study is to more accurately understand the extent,scope,and source of heavy metals pollution near a typical mining area,providing effective help to solve the problem of heavy metals pollution.
基金Supported by Provincial Special Fund,Comprehensive Treatment of the Water Environment(Phase V)in Taihu Lake,China[xiangfagaitou(2011)27]
文摘[Objective] The research aimed to reduce emission load of the farmland runoff by using ecological ditches and pond. [Method] N and P intercepting project construction of the ecological ditches and pond in Zhaiji Village, Xiangcheng District, Suzhou City as research object, by repairing 1 834 m3 of original drainage ditches, newly excavating 6 800 m2 of ecological main ditches and 6 000 m2 of artificial purification ecological pond, etc., runoff emission load in real control area of the project was counted. [Result] Annual net loads of the runoff emission for TN and TP were respectively 2 552.22 and 95.00 kg in 33.3 hm2 of farmland. Annual runoff intercepting loads of TN and TP were respectively 1 225.07 and 50.35 kg in ditches. Annual runoff intercepting loads of TN and TP were respectively 1 327.15 and 44.65 kg in ecological pond. In effluent, TN concentration was 6.32 mg/L and was smaller than 15 mg/L. TP concentration was 0.25 mg/L and was smaller than 0.5 mg/L. They both reached level-one A discharge standard. [Conclusion] The research provided theoretical basis for effective control of the agricultural non-point source pollution in Taihu Lake basin.
文摘The trace elements chemistry of Bartlett Pond, a small shallow wetland pond in Laredo, Southern Texas, was sampled to evaluate the dynamics of trace elements impacts on water quality and ecosystems ecology of the pond. Two types of fish (bass and tilapia) were also sampled to see the trace element accumulation in different parts of their body. The concentrations of trace elements in water samples were found in the following order: Fe ≫Sb > Pb > As ≫Co > Tl > Cr > Cd within Bartlett Pond. Overall, the water quality of the pond is unacceptable for drinking and any other purposes as trace element concentrations (e.g. As, Cd, Co, Cr, Pb, Fe, Sb and Tl) are exceedingly higher (several fold) than the WHO and US EPA guidelines. Predictive and correlation analysis shows that most trace elements exhibit a strong positive correlation among them indicating the same anthropogenic sources and biogeochemical processes regulate these trace elements within the pond. Distributions of the trace elements in water exhibit different shapes mostly as positively skewed distribution for As, Cd, Co, Cr, and Tl, symmetrical distribution for Fe and almost symmetrical distribution for Pb and Sb. Concentrations of As, Co and Tl accumulated much higher in different parts of the Bass than Tilapia fish. The concentrations of As, Tl, Co, and Sb appeared significantly higher in different parts of the body of both Bass and Tilapia than the maximum SRM certified values. Accumulation of these contaminants in fish tissues pose increased health risks to humans who consume these contaminated fish although fishing is prohibited. Anthropogenic activities in the region primarily degrade the whole pond ecosystem ecology of the Bartlett Pond and waters of this pond to be not recommended for any use. These findings may be useful for the scientific community and concerned authorities to improve understanding about these precious natural resources and conservation of the ecosystem ecology.
基金the National Modern Agricultural Industry Technology System(CARS-45)Innovative and Entrepreneurship Talent Funding Project of Jilin Provincial Department of Human Resources and Social Security(2021Y011).
文摘[Objectives]To explore the ecological aquaculture model in ponds in North China,several single techniques were assembled into the same culture system.[Methods]Three ponds were selected,the species and stocking rate were exactly the same,the water was not changed during the culture period,and the water loss due to evaporation and leakage was recovered.Since the middle of May,the hydrochemical indicators such as ammonia nitrogen,nitrite nitrogen,water temperature,dissolved oxygen and pH were monitored every 10 d.According to the monitoring results of ammonia nitrogen,carbon sources were added to the culture ponds to adjust the ratio of C to N,and carbon sources were added 9 times during the culture period.The stocking rate and yield per unit area were accurately measured at the beginning and end of the experiment,and no less than 30 fishes were randomly sampled to calculate the relevant growth indicators and feed coefficients.[Results]Except that the nonionic ammonia in pond 3#exceeded the standard by 10.3%on July 25,all other hydrochemical indicators met the Fisheries Water Quality Standard,and there was no significant difference in all hydrochemical indicators at the same time(P>0.05).The survival rate in 3 ponds was more than 95.0%,the average body weight of individuals out of the pond had no difference(P>0.05),and the feed coefficient was 1.41-1.43.There was no disease during the culture period,and the water was saved by 46.6%compared with the traditional culture model.[Conclusions]This study can provide a basis for the construction of a new model suitable for ecological aquaculture in ponds in North China.