期刊文献+
共找到1,787篇文章
< 1 2 90 >
每页显示 20 50 100
Research on Fracture Prediction Method Based on Multi-Source Information Fusion
1
作者 Yu Zhang Junlin Zhang +1 位作者 Shengli Xu Lina Yang 《Journal of Geoscience and Environment Protection》 2024年第6期291-304,共14页
Machine learning is a good method for predicting fracture by integrating multi-source information. Post-stack seismic attributes are commonly used to predict medium to large fractures, while pre-stack seismic attribut... Machine learning is a good method for predicting fracture by integrating multi-source information. Post-stack seismic attributes are commonly used to predict medium to large fractures, while pre-stack seismic attributes are proven to be more sensitive to small and micro sized fractures through forward modeling. Using machine learning algorithm to fuse information from different scales to predict fracture can greatly improve the accuracy of fracture prediction. On the basis of In-Situ stress prediction, the paper conducted post-stack seismic attribute analysis and pre-stack seismic attribute analysis, further studied on the sensitivity of seismic attributes to fracture and selected sensitive attributes, used the sensitivity log of well-bore fractures as the target log for learning, ultimately obtained a comprehensive body of fracture. Through blind well verification, the prediction results match well with the we1l data and the prediction results is highly consistent with the production data. The results of fracture prediction are reliable, and the research method has certain reference significance for fracture prediction. 展开更多
关键词 In-Situ Stress fracture prediction Seismic Attribute Machine Learning
下载PDF
Three predictive scores compared in a retrospective multicenter study of nonunion tibial shaft fracture
2
作者 Davide Quarta Marco Grassi +3 位作者 Giuliano Lattanzi Antonio Pompilio Gigante Alessio D'Anca Domenico Potena 《World Journal of Orthopedics》 2024年第6期560-569,共10页
BACKGROUND Delayed union,malunion,and nonunion are serious complications in the healing of fractures.Predicting the risk of nonunion before or after surgery is challenging.AIM To compare the most prevalent predictive ... BACKGROUND Delayed union,malunion,and nonunion are serious complications in the healing of fractures.Predicting the risk of nonunion before or after surgery is challenging.AIM To compare the most prevalent predictive scores of nonunion used in clinical practice to determine the most accurate score for predicting nonunion.METHODS We collected data from patients with tibial shaft fractures undergoing surgery from January 2016 to December 2020 in three different trauma hospitals.In this retrospective multicenter study,we considered only fractures treated with intramedullary nailing.We calculated the tibia FRACTure prediction healING days(FRACTING)score,Nonunion Risk Determination score,and Leeds-Genoa Nonunion Index(LEG-NUI)score at the time of definitive fixation.RESULTS Of the 130 patients enrolled,89(68.4%)healed within 9 months and were classified as union.The remaining patients(n=41,31.5%)healed after more than 9 months or underwent other surgical procedures and were classified as nonunion.After calculation of the three scores,LEG-NUI and FRACTING were the most accurate at predicting healing.CONCLUSION LEG-NUI and FRACTING showed the best performances by accurately predicting union and nonunion. 展开更多
关键词 TRAUMA BONE Tibial fracture NONUNION SCORES prediction model
下载PDF
The application study on the multi-scales integrated prediction method to fractured reservoir description 被引量:17
3
作者 陈双全 曾联波 +3 位作者 黄平 孙绍寒 张琬璐 李向阳 《Applied Geophysics》 SCIE CSCD 2016年第1期80-92,219,共14页
In this paper,we implement three scales of fracture integrated prediction study by classifying it to macro-( 1/4/λ),meso-( 1/100λ and 1/4λ) and micro-( 1/100λ) scales.Based on the multi-scales rock physics ... In this paper,we implement three scales of fracture integrated prediction study by classifying it to macro-( 1/4/λ),meso-( 1/100λ and 1/4λ) and micro-( 1/100λ) scales.Based on the multi-scales rock physics modelling technique,the seismic azimuthal anisotropy characteristic is analyzed for distinguishing the fractures of meso-scale.Furthermore,by integrating geological core fracture description,image well-logging fracture interpretation,seismic attributes macro-scale fracture prediction and core slice micro-scale fracture characterization,an comprehensive multi-scale fracture prediction methodology and technique workflow are proposed by using geology,well-logging and seismic multi-attributes.Firstly,utilizing the geology core slice observation(Fractures description) and image well-logging data interpretation results,the main governing factors of fracture development are obtained,and then the control factors of the development of regional macro-scale fractures are carried out via modelling of the tectonic stress field.For the meso-scale fracture description,the poststack geometric attributes are used to describe the macro-scale fracture as well,the prestack attenuation seismic attribute is used to predict the meso-scale fracture.Finally,by combining lithological statistic inversion with superposed results of faults,the relationship of the meso-scale fractures,lithology and faults can be reasonably interpreted and the cause of meso-scale fractures can be verified.The micro-scale fracture description is mainly implemented by using the electron microscope scanning of cores.Therefore,the development of fractures in reservoirs is assessed by valuating three classes of fracture prediction results.An integrated fracture prediction application to a real field in Sichuan basin,where limestone reservoir fractures developed,is implemented.The application results in the study area indicates that the proposed multi-scales integrated fracture prediction method and the technique procedureare able to deal with the strong heterogeneity and multi-scales problems in fracture prediction.Moreover,the multi-scale fracture prediction technique integrated with geology,well-logging and seismic multi-information can help improve the reservoir characterization and sweet-spots prediction for the fractured hydrocarbon reservoirs. 展开更多
关键词 Multi-scales fracture prediction HETEROGENEITY Reservoir characterization Sweet-spots prediction
下载PDF
A method for predicting the water-flowing fractured zone height based on an improved key stratum theory 被引量:1
4
作者 Jianghui He Wenping Li +3 位作者 Kaifang Fan Wei Qiao Qiqing Wang Liangning Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期61-71,共11页
In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation... In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method. 展开更多
关键词 Coal mining Water-flowing fractured zone height prediction method Improved key stratum theory
下载PDF
Development and validation of a predictive model for spinal fracture risk in osteoporosis patients
5
作者 Xu-Miao Lin Zhi-Cai Shi 《World Journal of Clinical Cases》 SCIE 2023年第20期4824-4832,共9页
BACKGROUND Spinal osteoporosis is a prevalent health condition characterized by the thinning of bone tissues in the spine,increasing the risk of fractures.Given its high incidence,especially among older populations,it... BACKGROUND Spinal osteoporosis is a prevalent health condition characterized by the thinning of bone tissues in the spine,increasing the risk of fractures.Given its high incidence,especially among older populations,it is critical to have accurate and effective predictive models for fracture risk.Traditionally,clinicians have relied on a combination of factors such as demographics,clinical attributes,and radiological characteristics to predict fracture risk in these patients.However,these models often lack precision and fail to include all potential risk factors.There is a need for a more comprehensive,statistically robust prediction model that can better identify high-risk individuals for early intervention.AIM To construct and validate a model for forecasting fracture risk in patients with spinal osteoporosis.METHODS The medical records of 80 patients with spinal osteoporosis who were diagnosed and treated between 2019 and 2022 were retrospectively examined.The patients were selected according to strict criteria and categorized into two groups:Those with fractures(n=40)and those without fractures(n=40).Demographics,clinical attributes,biochemical indicators,bone mineral density(BMD),and radiological characteristics were collected and compared.A logistic regression analysis was employed to create an osteoporotic fracture risk-prediction model.The area under the receiver operating characteristic curve(AUROC)was used to evaluate the model’s performance.RESULTS Factors significantly associated with fracture risk included age,sex,body mass index(BMI),smoking history,BMD,vertebral trabecular alterations,and prior vertebral fractures.The final risk-prediction model was developed using the formula:(logit[P]=-3.75+0.04×age-1.15×sex+0.02×BMI+0.83×smoking history+2.25×BMD-1.12×vertebral trabecular alterations+1.83×previous vertebral fractures).The AUROC of the model was 0.93(95%CI:0.88-0.96,P<0.001),indicating strong discriminatory capabilities.CONCLUSION The fracture risk-prediction model,utilizing accessible clinical,biochemical,and radiological information,offered a precise tool for the evaluation of fracture risk in patients with spinal osteoporosis.The model has potential in the identification of high-risk individuals for early intervention and the guidance of appropriate preventive actions to reduce the impact of osteoporosis-related fractures. 展开更多
关键词 Spinal osteoporosis fracture risk prediction Bone mineral density Vertebral trabecular alterations Previous vertebral fractures
下载PDF
Prediction of Fracture-Cavity System in Carbonate Reservoir: A Case Study in the Tahe Oilfield 被引量:16
6
作者 WangShixing GuanLuping ZhuHailong 《Applied Geophysics》 SCIE CSCD 2004年第1期56-62,共7页
The carbonate rocks in Tahe oilfield, which suffered from multi-period polycycle karstification and structure deformation, are heterogeneous reservoirs that are rich in pores, cavities,and fractures. The reservoirs ar... The carbonate rocks in Tahe oilfield, which suffered from multi-period polycycle karstification and structure deformation, are heterogeneous reservoirs that are rich in pores, cavities,and fractures. The reservoirs are diversified in scale, space configuration, and complex in filling. For this kind of reservoir, a suite of seismic prestack or poststack prediction techniques has been developed based on the separation of seismic wave fields. Through cross-verification of the estimated results,a detailed description of palaeogeomorphology and structural features such as pores, cavities, and fractures in unaka has been achieved, the understanding of the spatial distribution of reservoir improved. 展开更多
关键词 fracture CAVERN CARBONATE RESERVOIR and prediction
下载PDF
Quantitative multiparameter prediction of fault-related fractures: a case study of the second member of the Funing Formation in the Jinhu Sag, Subei Basin 被引量:4
7
作者 Jing-Shou Liu Wen-Long Ding +3 位作者 Jun-Sheng Dai Yang Gu Hai-Meng Yang Bo Sun 《Petroleum Science》 SCIE CAS CSCD 2018年第3期468-483,共16页
In this paper, the analysis of faults with different scales and orientations reveals that the distribution of fractures always develops toward a higher degree of similarity with faults, and a method for calculating th... In this paper, the analysis of faults with different scales and orientations reveals that the distribution of fractures always develops toward a higher degree of similarity with faults, and a method for calculating the multiscale areal fracture density is proposed using fault-fracture self-similarity theory. Based on the fracture parameters observed in cores and thin sections, the initial apertures of multiscale fractures are determined using the constraint method with a skewed distribution. Through calculations and statistical analyses of in situ stresses in combination with physical experiments on rocks, a numerical geomechanical model of the in situ stress field is established. The fracture opening ability under the in situ stress field is subsequently analyzed. Combining the fracture aperture data and areal fracture density at different scales, a calculation model is proposed for the prediction of multiscale and multiperiod fracture parameters, including the fracture porosity, the magnitude and direction of maximum permeability and the flow conductivity. Finally, based on the relationships among fracture aperture,density, and the relative values of fracture porosity and permeability, a fracture development pattern is determined. 展开更多
关键词 Fault-related fracture Quantitative prediction Development pattern Multiscale fracture Numerical simulation Jinhu Sag
下载PDF
Fracture gradient prediction:an overview and an improved method 被引量:3
8
作者 Jincai Zhang Shang-Xian Yin 《Petroleum Science》 SCIE CAS CSCD 2017年第4期720-730,共11页
The fracture gradient is a critical parameter for drilling mud weight design in the energy industry. A new method in fracture gradient prediction is proposed based on analyzing worldwide leak-off test(LOT) data in off... The fracture gradient is a critical parameter for drilling mud weight design in the energy industry. A new method in fracture gradient prediction is proposed based on analyzing worldwide leak-off test(LOT) data in offshore drilling. Current fracture gradient prediction methods are also reviewed and compared to the proposed method. We analyze more than 200 LOT data in several offshore petroleum basins and find that the fracture gradient depends not only on the overburden stress and pore pressure, but also on the depth. The data indicate that the effective stress coefficient is higher at a shallower depth than that at a deeper depth in the shale formations. Based on this finding,a depth-dependent effective stress coefficient is proposed and applied for fracture gradient prediction. In some petroleum basins, many wells need to be drilled through long sections of salt formations to reach hydrocarbon reservoirs.The fracture gradient in salt formations is very different from that in other sedimentary rocks. Leak-off test data in the salt formations are investigated, and a fracture gradient prediction method is proposed. Case applications are examined to compare different fracture gradient methods and validate the proposed methods. The reasons why the LOT value is higher than its overburden gradient are also explained. 展开更多
关键词 fracture gradient prediction Leak-off test Breakdown pressure Mud loss fracture gradient in salt
下载PDF
Quantitative Prediction of Fracture Distribution of the Longmaxi Formation in the Dingshan Area, China using FEM Numerical Simulation 被引量:2
9
作者 XIE Jiatong QIN Qirong FAN Cunhui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第6期1662-1672,共11页
Fracture prediction is a technical issue in the field of petroleum exploration and production worldwide.Although there are many approaches to predict the distribution of cracks underground,these approaches have some l... Fracture prediction is a technical issue in the field of petroleum exploration and production worldwide.Although there are many approaches to predict the distribution of cracks underground,these approaches have some limitations.To resolve these issues,we ascertained the relation between numerical simulations of tectonic stress and the predicted distribution of fractures from the perspective of geologic genesis,based on the characteristics of the shale reservoir in the Longmaxi Formation in Dingshan;the features of fracture development in this reservoir were considered.3 D finite element method(FEM)was applied in combination with rock mechanical parameters derived from the acoustic emissions.The paleotectonic stress field of the crack formation period was simulated for the Longmaxi Formation in the Dingshan area.The splitting factor in the study area was calculated based on the rock breaking criterion.The coefficient of fracture development was selected as the quantitative prediction classification criteria for the cracks.The results show that a higher coefficient of fracture development indicates a greater degree of fracture development.On the basis of the fracture development coefficient classification,a favorable area was identified for the development of fracture prediction in the study area.The prediction results indicate that the south of the Dingshan area and the DY3 well of the central region are favorable zones for fracture development. 展开更多
关键词 FEM numerical simulation structural stress field fracture prediction Longmaxi Formation
下载PDF
3-D FRACTURE PROPAGATION SIMULATION AND PRODUCTION PREDICTION IN COALBED 被引量:1
10
作者 郭大立 纪禄军 +1 位作者 赵金洲 刘慈群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第4期385-393,共9页
In accordance with the fracturing and producing mechanism in coalbed methane well, and combining the knowledge of fluid mechanics, linear elastic fracture mechanics, thermal transfer, computing mathematics and softwar... In accordance with the fracturing and producing mechanism in coalbed methane well, and combining the knowledge of fluid mechanics, linear elastic fracture mechanics, thermal transfer, computing mathematics and software engineering, the three-dimensional hydraulic fracture propagating and dynamical production predicting models for coalbed methane well is put forward. The fracture propagation model takes the variation of rock mechanical properties and in-situ stress distribution into consideration. The dynamic performance prediction model takes the gas production mechanism into consideration. With these models, a three-dimensional hydraulic fracturing optimum design software for coalbed methane well is developed, and its practicality and reliability have been proved by ex-ample computation. 展开更多
关键词 coalbed fracturING three-dimensional fracture propagation production predicting DESORPTION DIFFUSION
下载PDF
Application of Pore Evolution and Fracture Development Coupled Models in the Prediction of Reservoir "Sweet Spots" in Tight Sandstones 被引量:3
11
作者 ZHANG Linyan ZHUO Xizhun +3 位作者 MA Licheng CHEN Xiaoshuai SONG Licai ZHOU Xingui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第3期1051-1052,共2页
The Chang-63 reservoir in the Huaqing area has widely developed tight sandstone "thick sand layers, but not reservoirs characterized by rich in oil", and it is thus necessary to further study its oil and gas enrichm... The Chang-63 reservoir in the Huaqing area has widely developed tight sandstone "thick sand layers, but not reservoirs characterized by rich in oil", and it is thus necessary to further study its oil and gas enrichment law. This study builds porosity and fracture development and evolution models in different deposition environments, through core observation, casting thin section, SEM, porosity and permeability analysis, burial history analysis, and "four-property-relationships" analysis. 展开更多
关键词 Sweet Spots in Tight Sandstones Application of Pore Evolution and fracture Development Coupled Models in the prediction of Reservoir
下载PDF
An intelligent prediction method of fractures in tight carbonate reservoirs 被引量:1
12
作者 DONG Shaoqun ZENG Lianbo +4 位作者 DU Xiangyi BAO Mingyang LYU Wenya JI Chunqiu HAO Jingru 《Petroleum Exploration and Development》 CSCD 2022年第6期1364-1376,共13页
An intelligent prediction method for fractures in tight carbonate reservoir has been established by upgrading single-well fracture identification and interwell fracture trend prediction with artificial intelligence,mo... An intelligent prediction method for fractures in tight carbonate reservoir has been established by upgrading single-well fracture identification and interwell fracture trend prediction with artificial intelligence,modifying construction of interwell fracture density model,and modeling fracture network and making fracture property equivalence.This method deeply mines fracture information in multi-source isomerous data of different scales to reduce uncertainties of fracture prediction.Based on conventional fracture indicating parameter method,a prediction method of single-well fractures has been worked out by using 3 kinds of artificial intelligence methods to improve fracture identification accuracy from 3 aspects,small sample classification,multi-scale nonlinear feature extraction,and decreasing variance of the prediction model.Fracture prediction by artificial intelligence using seismic attributes provides many details of inter-well fractures.It is combined with fault-related fracture information predicted by numerical simulation of reservoir geomechanics to improve inter-well fracture trend prediction.An interwell fracture density model for fracture network modeling is built by coupling single-well fracture identification and interwell fracture trend through co-sequential simulation.By taking the tight carbonate reservoir of Oligocene-Miocene AS Formation of A Oilfield in Zagros Basin of the Middle East as an example,the proposed prediction method was applied and verified.The single-well fracture identification improves over 15%compared with the conventional fracture indication parameter method in accuracy rate,and the inter-well fracture prediction improves over 25%compared with the composite seismic attribute prediction.The established fracture network model is well consistent with the fluid production index. 展开更多
关键词 fracture identification by well logs interwell fracture trend prediction interwell fracture density model fracture network model artificial intelligence tight carbonate reservoir Zagros Basin
下载PDF
Fracture prediction in non-isothermal viscous pressure bulging of aluminum alloy sheet using ductile fracture criterion 被引量:1
13
作者 王忠金 刘建光 李毅 《Journal of Central South University》 SCIE EI CAS 2010年第3期449-453,共5页
The failure of AA3003 aluminum alloy sheet metal was predicted for non-isothermal viscous pressure bulging (VPB). Utilizing the coupled thermo-mechanical finite element method combined with ductile fracture criterion,... The failure of AA3003 aluminum alloy sheet metal was predicted for non-isothermal viscous pressure bulging (VPB). Utilizing the coupled thermo-mechanical finite element method combined with ductile fracture criterion, the calculations were carried out for non-isotherm VPB at various temperatures and the influences of the initial temperature of viscous medium on failure mode of bulge specimens were investigated. The results show that the failure modes are different for the non-isothermal VPB with different initial temperatures of viscous medium. For the non-isothermal VPB of AA3003 aluminum alloy sheet with initial temperature of 250 ℃, when the initial temperature of viscous medium ranges from 150 to 180 ℃, the formability of sheet metal can be improved to a full extent. The validity of the predictions is examined by comparing with experimental results. 展开更多
关键词 fracture prediction non-isothermal viscous pressure bulging aluminum alloy sheet finite element method
下载PDF
Fatigue-Creep Interaction Fracture Maps and Life Prediction under Combined Fatigue-Creep Stress Cycling
14
作者 陈国良 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1990年第6期391-414,共24页
The purpose of this paper is to introduce sys- tematically the theory of fatigue-creep interaction fracture map and its application.
关键词 fatigue-creep interaction fracture map life prediction
下载PDF
Thermal stress and fracture temperature prediction for flexible pavement
15
作者 钟阳 耿立涛 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第6期867-872,共6页
Analytical solutions of thermal stresses in multilayered elastic system whose materials characteristics are dependent on temperature are derived by a transfer matrix and integral transformation method.The resulting fo... Analytical solutions of thermal stresses in multilayered elastic system whose materials characteristics are dependent on temperature are derived by a transfer matrix and integral transformation method.The resulting formulation is used to calculate thermal stresses in the low temperature cracking problem of asphalt pavement.Numerical simulations and analyses are performed using different structural combinations and material characteristics of base course.And fracture temperatures are predicted for a given flexible pavement constructed with three types of asphalt mixtures based on the calculated results and experimental data.This approach serves as a better model for real pavement structure as it takes into account the relationships between the material characteristics and temperature in the pavement system. 展开更多
关键词 flexible pavement thermal stresses Integral transformation transfer matrix method temperature-dependent material characteristics fracture temperatures prediction
下载PDF
Forward modeling of fracture prediction based on seismic attribute modeling
16
作者 Rubing Deng Qi Chen 《Earthquake Research Advances》 CSCD 2021年第S01期57-58,共2页
Fractured reservoirs have always been a big favorable area for oil and gas reservoirs,so prediction of fractures is also a research hotspot in recent years.Due to the diversity of fracture development and the unclear ... Fractured reservoirs have always been a big favorable area for oil and gas reservoirs,so prediction of fractures is also a research hotspot in recent years.Due to the diversity of fracture development and the unclear development mechanism,fracture prediction has always been a major problem.Simple numerical simulation In this paper,seismic attribute is combined with numerical simulation,logging data and actual seismic profile are used as constraints,inversion impedance value and coherent attribute are combined,and finally a property model more in line with the actual geological conditions is established.The wave equation calculation and migration processing were used to obtain the numerical simulation profile,and the actual seismic profile,fracture detection profile and numerical simulation profile were combined for analysis:①The numerical simulation section under this modeling method can greatly correspond to the actual seismic section,and the reflected results can better reflect the changes of response characteristics.②The reliability and applicability of the fracture detection technology can be determined by comparing the forward simulation profile with the fracture detection profile. 展开更多
关键词 fracture prediction seismic attribute modeling
下载PDF
Reservoir prediction using pre-stack inverted elastic parameters 被引量:8
17
作者 陈双全 王尚旭 +1 位作者 张永刚 季敏 《Applied Geophysics》 SCIE CSCD 2009年第4期349-358,394,共11页
This is a case study of the application of pre-stack inverted elastic parameters to tight-sand reservoir prediction. With the development of oil and gas exploration, pre-stack data and inversion results are increasing... This is a case study of the application of pre-stack inverted elastic parameters to tight-sand reservoir prediction. With the development of oil and gas exploration, pre-stack data and inversion results are increasingly used for production objectives. The pre-stack seismic property studies include not only amplitude verse offset (AVO) but also the characteristics of other elastic property changes. In this paper, we analyze the elastic property parameters characteristics of gas- and wet-sands using data from four gas-sand core types. We found that some special elastic property parameters or combinations can be used to identify gas sands from water saturated sand. Thus, we can do reservoir interpretation and description using different elastic property data from the pre-stack seismic inversion processing. The pre- stack inversion method is based on the simplified Aki-Richard linear equation. The initial model can be generated from well log data and seismic and geologic interpreted horizons in the study area. The input seismic data is angle gathers generated from the common reflection gathers used in pre-stack time or depth migration. The inversion results are elastic property parameters or their combinations. We use a field data example to examine which elastic property parameters or combinations of parameters can most easily discriminate gas sands from background geology and which are most sensitive to pore-fluid content. Comparing the inversion results to well data, we found that it is useful to predict gas reservoirs using λ, λρ, λ/μ, and K/μ properties, which indicate the gas characteristics in the study reservoir. 展开更多
关键词 elastic parameters pre-stack inversion reservoir prediction AVO analysis angle gather
下载PDF
Production prediction for fracture-vug carbonate reservoirs using electric imaging logging data 被引量:1
18
作者 XIE Fang ZHANG Chengsen +1 位作者 LIU Ruilin XIAO Chengwen 《Petroleum Exploration and Development》 2018年第2期369-376,共8页
Considering the fluid flow non-darcy characteristics in fracture-vug carbonate reservoirs, a new multi-scale conduit flow model production prediction method for fracture-vug carbonate reservoirs was presented using im... Considering the fluid flow non-darcy characteristics in fracture-vug carbonate reservoirs, a new multi-scale conduit flow model production prediction method for fracture-vug carbonate reservoirs was presented using image segmentation technique of electric imaging logging data. Firstly, based on Hagen-Poiseuille's law of incompressible fluid flow and the different cross-sectional areas in single fractures and vugs in carbonate reservoirs, a multi-scale conduit flow model for fracture-vug carbonate reservoir was established, and a multi-scale conduit radial fluid flow equation was deduced. Then, conduit flow production index was introduced. The conduit flow production index was calculated using fracture-vug area extracted from the result of electrical image segmentation. Finally, production prediction of fracture-vug carbonate reservoir was realized by using electric imaging logging data. The method has been applied to Ordovician fracture-vug carbonate reservoirs in the Tabei area, and the predicted results are in good agreement with the oil testing data. 展开更多
关键词 TARIM Basin ORDOVICIAN CARBONATE fracture-vug CARBONATE reservoir electric imaging logging conduit flow model PRODUCTION index PRODUCTION prediction
下载PDF
Application of Comprehensive Geophysical Techniques to Predict Carbonate Fractured Reservoirs inQingxi Oilfield 被引量:1
19
作者 师永民 撒利明 +3 位作者 陈广坡 田鑫 李虹 王斌婷 《Applied Geophysics》 SCIE CSCD 2005年第2期119-126,F0003,共9页
Inter-crystalline pores, cavities, and fractures created from diagenetic shrinkage of dolomite are inter-connected each other, forming fine oil- and gas-bearing reservoirs. It is hard to predict these complex fracture... Inter-crystalline pores, cavities, and fractures created from diagenetic shrinkage of dolomite are inter-connected each other, forming fine oil- and gas-bearing reservoirs. It is hard to predict these complex fracture-cavity reservoirs because of their random distribution, different growth timing, and so on. Taking the lacustrine dolomite fracture-pore reservoir in the Lower Cretaceous Xiagou Formation in the Qingxi oilfield within the Jiuquan basin as an example, we put forward a comprehensive geophysical method to predict carbonate fractures. 展开更多
关键词 Qingxi oilfield imaging logging waveform analysis tectonic stress field CARBONATE and fracture prediction
下载PDF
Grading evaluation and prediction of fracture-cavity reservoirs in Cambrian Longwangmiao Formation of Moxi area,Sichuan Basin,SW China
20
作者 WANG Bei LIU Xiangjun SIMA Liqiang 《Petroleum Exploration and Development》 2019年第2期301-313,共13页
By using core, thin section, well logging, seismic, well testing and other data, the reservoir grading evaluation parameters were selected, the classification criterion considering multiple factors for carbonate reser... By using core, thin section, well logging, seismic, well testing and other data, the reservoir grading evaluation parameters were selected, the classification criterion considering multiple factors for carbonate reservoirs in this area were established, and the main factors affecting the development of high quality reservoir were determined. By employing Formation MicroScanner Image(FMI) logging fracture-cavity recognition technology and reservoir seismic waveform classification technology, the spatial distribution of reservoirs of all grades were predicted. On the basis of identifying four types of reservoir space developed in the study area by mercury injection experiment, a classification criterion was established using four reservoir grading evaluation parameters, median throat radius, effective porosity and effective permeability of fracture-cavity development zone, relationship between fracture and dissolution pore development and assemblage, and the reservoirs in the study area were classified into grade I high quality reservoir of fracture and cavity type, grade II average reservoir of fracture and porosity type, grade Ⅲ poor reservoir of intergranular pore type. Based on the three main factors controlling the development of high quality reservoir, structural location, sedimentary facies and epigenesis, the distribution of the 3 grades reservoirs in each well area and formation were predicted using geophysical response and percolation characteristics. Follow-up drilling has confirmed that the classification evaluation standard and prediction methods established are effective. 展开更多
关键词 Sichuan Basin Moxi area CAMBRIAN Longwangmiao Formation carbonate rock fracture-CAVITY RESERVOIR RESERVOIR GRADING EVALUATION RESERVOIR prediction
下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部