The mathematical model of the grinding temperature is established. The grinding temperature and the cooling rate are measured in the grind-hardening process of 40Cr steel under different conditions. Moreover, the grin...The mathematical model of the grinding temperature is established. The grinding temperature and the cooling rate are measured in the grind-hardening process of 40Cr steel under different conditions. Moreover, the grind-hardening effects are investigated. Experimental results show that the calculated temperatures are comparatively close to the measured ones, and the required temperature and cooling rate can be achieved. Furthermore, the microstructure of the hardened zone is similar to that obtained through the high-frequency induction technique. The average hardness of the entirely hardened zone is HV670 and the thickness of the hardened layer is adjacent to 1.3 mm. It indicates that the hardening mechanism induced by the grinding heat and high-frequency heating is identical. Finally, the fine needlelike martensite is obtained.展开更多
Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively i...Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively integrate grinding and surface hardening. Experimental studies were carried out on grinding hardening of non-quenched and tempered steel. Through grinding experiments with variable depths of cut and feeding rate,the variation in the depth of the hardening layer was studied and the microstructure of the hardening zone of the test pieces was subsequently ana-lyzed. In the end,the hardening effect of non-quenched and tempered steel was compared with that of 40Cr steel,which revealed the superiority of non-quenched and tempered steel in grinding hardening technology.展开更多
The grind-hardening method suitable for external grinding is proposed in this paper and the experiments are carried out on M1432B grinding machine. The hardened layer of the workpiece with cut depth 0.3 mm and speed 0...The grind-hardening method suitable for external grinding is proposed in this paper and the experiments are carried out on M1432B grinding machine. The hardened layer of the workpiece with cut depth 0.3 mm and speed 0.2 m/min is analyzed. The result indicates the metallurgical structure of the hardened layer is martensite and the top hardness value is 754 HV (about 62.3 HRC). At the same time, the grinding force, one of the most important factors of external grind-hardening process is modeled, and the measurement method is provided with elastic core clampers. The measurement result shows that the values of both the tangential force and the normal force increase when the cut depth increases, and the top value is 146 N and 656 N with the cut depth value of 0.4 mm. The increment speed and the value of the normal force are larger than the tangential force.展开更多
To shorten the process of face gears,the grinding-hardening effect experiment of face gears under minimum quantity lubrication(MQL)was carried out.Firstly,the grinding method of face gears was analyzed based on the en...To shorten the process of face gears,the grinding-hardening effect experiment of face gears under minimum quantity lubrication(MQL)was carried out.Firstly,the grinding method of face gears was analyzed based on the envelope principle,and the control equation of grinding movement was constructed.Secondly,the distribution ratio equation of heat flux density was established,and the theoretical calculation formula of triangle heat source was derived.Thirdly,since a MATLAB calculation program was compiled,the temperature change law under MQL grinding was analyzed.In the end,the influence of grinding parameters on the grinding-hardening layer depth was analyzed.The results demonstrate that MQL grinding achieves the grinding-hardening effect.展开更多
Engineering the surfaces of components to improve the life and performance of parts used in automotive and aerospace engineering is the active area of research. Suitable Thermal/ Mechanical/Thermo mechanical surface e...Engineering the surfaces of components to improve the life and performance of parts used in automotive and aerospace engineering is the active area of research. Suitable Thermal/ Mechanical/Thermo mechanical surface engineering treatments will produce extensive rearrangement of atoms in metals and alloys and corresponding marked variations in Physical, Chemical and Mechanical properties. Among the more important of these treatments are heat treatment processes such as hardening by Quenching, Induction hardening and Case Carburizing which rely on phase transformations to produce desired changes in mechanical properties. Other processes where phase transformation occur are casting, welding and machining etc. [1] Phase transformation may be homogeneous or heterogeneous. Homogeneous involves rearrangements in the structure of the material taking place simultaneously in all parts of the solid, while the heterogeneous transformation involves structural changes which are more localized. Alternatively they could be called as Isothermal and Nonisothermal transformation. But irrespective of the classification, these transformations alter the structure of the material giving rise to changes in the mechanical and physical properties of the processed material. It is of interest to review some consequences of surface modification in isothermal (Normalizing) and nonisothermal transformations (Machining) of low carbon steels.展开更多
The YC 31125 hardened gear hobbingmachine was developed by theChongqing Machine Tools Works. Itworks according to the principle of continuousscale division: it can cut spur and helicalgears, and chain and worm wheels....The YC 31125 hardened gear hobbingmachine was developed by theChongqing Machine Tools Works. Itworks according to the principle of continuousscale division: it can cut spur and helicalgears, and chain and worm wheels. Thanksto its rigidness, it can semi-finish or finishhardened gears by the hobbing method usinga carbide hob. In this way, hardened gearscan be efficiently finished by hobbingoperation instead of the grinding method,with higher precision and productionefficiency. When hobbing spur gears,展开更多
The cooling and lubrication conditions during the grinding process significantly impact the nickel-based superalloy’s final service performance.The existing jet cooling and heat pipe technology can solve the heat con...The cooling and lubrication conditions during the grinding process significantly impact the nickel-based superalloy’s final service performance.The existing jet cooling and heat pipe technology can solve the heat conduction problem in the grinding process of superalloy.Still,managing cooling,lubrication,and chip removal are difficult.This paper describes the design and fabrication of a novel central fluid-through internal cooling slotted grinding wheel with an ordered grain pattern to improve the grinding machinability of a nickel-based superalloy.The pressurized grinding fluid was ejected into the grinding zone via the pipe and tool holder from the lower-end face of the inner cooling wheel.The structure of the grinding wheel was optimized using computational fluid dynamics(CFD).The flow field in the grinding area achieved the highest overall flow rate,distribution homogeneity,and effective exit flow when the internal flow channel had four throughholes.The exit for the inner runner is located at the abrasive edge and diamond staggered pattern.Single-layer brazing was used to create cubic boron nitride(CBN)abrasive rings with various abrasive patterns.The internal cooling wheel matrix and various components were prepared according to the optimized grinding wheel geometry model.A grinding test bench was built to conduct an experimental study of grinding the nickel-based alloy GH4169.The results show that,under the same conditions,a diamond-shaped staggered pattern obtains lower grinding temperature,lower surface roughness,better surface morphology,and more significant residual compressive stress distribution than an abrasive cluster diagonal circular staggered pattern or disordered pattern.The average effective flow rate calculated by CFD is increased by 42.3%when compared to the disordered pattern.In the experiment,compared to the disordered arrangement,with the increase of grinding wheel’s rotating speed and coolant pressure,the average grinding temperature of abrasive grain with diamond-interleaved arrangement decreases by 58.2%and 51.7%respectively,and its surface hardening degree decreases by 11.1%and 11.7%respectively.展开更多
Pre-stressed dry grinding can result in a hardened layer on the part surface while the surface residual stress is controlled.Considering the factors of the thermal field,pre-stress,and microstructural transformation,a...Pre-stressed dry grinding can result in a hardened layer on the part surface while the surface residual stress is controlled.Considering the factors of the thermal field,pre-stress,and microstructural transformation,a proximate model of surface residual stress for pre-stressed dry grinding is established using the ANSYS finite element simulation method and verified through experiment.The variation laws and mechanisms of the residual stress along with the grinding parameters are revealed.Under the comprehensive effect of pre-stress and phase transformation,the residual stress of pre-stressed dry grinding is revealed mainly as compressive stress.This increases as the pre・stress and grinding depth increase.Under the coupling effect,pre-stress has larger influence on the residual stress than the grinding depth.The model can analyze and predict the residual stress of pre-stressed dry grinding in general.展开更多
文摘The mathematical model of the grinding temperature is established. The grinding temperature and the cooling rate are measured in the grind-hardening process of 40Cr steel under different conditions. Moreover, the grind-hardening effects are investigated. Experimental results show that the calculated temperatures are comparatively close to the measured ones, and the required temperature and cooling rate can be achieved. Furthermore, the microstructure of the hardened zone is similar to that obtained through the high-frequency induction technique. The average hardness of the entirely hardened zone is HV670 and the thickness of the hardened layer is adjacent to 1.3 mm. It indicates that the hardening mechanism induced by the grinding heat and high-frequency heating is identical. Finally, the fine needlelike martensite is obtained.
基金Projects JH03-001 supported by the High and New Technology Foundation of Jiangsu High School2006B009 by the Science Foundation of China University ofMining & Technology
文摘Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively integrate grinding and surface hardening. Experimental studies were carried out on grinding hardening of non-quenched and tempered steel. Through grinding experiments with variable depths of cut and feeding rate,the variation in the depth of the hardening layer was studied and the microstructure of the hardening zone of the test pieces was subsequently ana-lyzed. In the end,the hardening effect of non-quenched and tempered steel was compared with that of 40Cr steel,which revealed the superiority of non-quenched and tempered steel in grinding hardening technology.
文摘The grind-hardening method suitable for external grinding is proposed in this paper and the experiments are carried out on M1432B grinding machine. The hardened layer of the workpiece with cut depth 0.3 mm and speed 0.2 m/min is analyzed. The result indicates the metallurgical structure of the hardened layer is martensite and the top hardness value is 754 HV (about 62.3 HRC). At the same time, the grinding force, one of the most important factors of external grind-hardening process is modeled, and the measurement method is provided with elastic core clampers. The measurement result shows that the values of both the tangential force and the normal force increase when the cut depth increases, and the top value is 146 N and 656 N with the cut depth value of 0.4 mm. The increment speed and the value of the normal force are larger than the tangential force.
基金Supported by the Innovative Research Project of Basic Products of State Administration of Science,Technology and Industry for National Defense(237099000000170006)。
文摘To shorten the process of face gears,the grinding-hardening effect experiment of face gears under minimum quantity lubrication(MQL)was carried out.Firstly,the grinding method of face gears was analyzed based on the envelope principle,and the control equation of grinding movement was constructed.Secondly,the distribution ratio equation of heat flux density was established,and the theoretical calculation formula of triangle heat source was derived.Thirdly,since a MATLAB calculation program was compiled,the temperature change law under MQL grinding was analyzed.In the end,the influence of grinding parameters on the grinding-hardening layer depth was analyzed.The results demonstrate that MQL grinding achieves the grinding-hardening effect.
文摘Engineering the surfaces of components to improve the life and performance of parts used in automotive and aerospace engineering is the active area of research. Suitable Thermal/ Mechanical/Thermo mechanical surface engineering treatments will produce extensive rearrangement of atoms in metals and alloys and corresponding marked variations in Physical, Chemical and Mechanical properties. Among the more important of these treatments are heat treatment processes such as hardening by Quenching, Induction hardening and Case Carburizing which rely on phase transformations to produce desired changes in mechanical properties. Other processes where phase transformation occur are casting, welding and machining etc. [1] Phase transformation may be homogeneous or heterogeneous. Homogeneous involves rearrangements in the structure of the material taking place simultaneously in all parts of the solid, while the heterogeneous transformation involves structural changes which are more localized. Alternatively they could be called as Isothermal and Nonisothermal transformation. But irrespective of the classification, these transformations alter the structure of the material giving rise to changes in the mechanical and physical properties of the processed material. It is of interest to review some consequences of surface modification in isothermal (Normalizing) and nonisothermal transformations (Machining) of low carbon steels.
文摘The YC 31125 hardened gear hobbingmachine was developed by theChongqing Machine Tools Works. Itworks according to the principle of continuousscale division: it can cut spur and helicalgears, and chain and worm wheels. Thanksto its rigidness, it can semi-finish or finishhardened gears by the hobbing method usinga carbide hob. In this way, hardened gearscan be efficiently finished by hobbingoperation instead of the grinding method,with higher precision and productionefficiency. When hobbing spur gears,
基金This study was co-supported by the National Natural Science Foundation of China(Nos.51975504 and 51475404)the Provincial Natural Science Foundation of Hunan for Distinguished Young Scholars(No.2022JJ10045)+1 种基金the Hunan Education Department Project(No.2021111400707)Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20220536).
文摘The cooling and lubrication conditions during the grinding process significantly impact the nickel-based superalloy’s final service performance.The existing jet cooling and heat pipe technology can solve the heat conduction problem in the grinding process of superalloy.Still,managing cooling,lubrication,and chip removal are difficult.This paper describes the design and fabrication of a novel central fluid-through internal cooling slotted grinding wheel with an ordered grain pattern to improve the grinding machinability of a nickel-based superalloy.The pressurized grinding fluid was ejected into the grinding zone via the pipe and tool holder from the lower-end face of the inner cooling wheel.The structure of the grinding wheel was optimized using computational fluid dynamics(CFD).The flow field in the grinding area achieved the highest overall flow rate,distribution homogeneity,and effective exit flow when the internal flow channel had four throughholes.The exit for the inner runner is located at the abrasive edge and diamond staggered pattern.Single-layer brazing was used to create cubic boron nitride(CBN)abrasive rings with various abrasive patterns.The internal cooling wheel matrix and various components were prepared according to the optimized grinding wheel geometry model.A grinding test bench was built to conduct an experimental study of grinding the nickel-based alloy GH4169.The results show that,under the same conditions,a diamond-shaped staggered pattern obtains lower grinding temperature,lower surface roughness,better surface morphology,and more significant residual compressive stress distribution than an abrasive cluster diagonal circular staggered pattern or disordered pattern.The average effective flow rate calculated by CFD is increased by 42.3%when compared to the disordered pattern.In the experiment,compared to the disordered arrangement,with the increase of grinding wheel’s rotating speed and coolant pressure,the average grinding temperature of abrasive grain with diamond-interleaved arrangement decreases by 58.2%and 51.7%respectively,and its surface hardening degree decreases by 11.1%and 11.7%respectively.
基金This paper is supported by the Fundamental Research Funds for the Central Universities of China(Grant No.N170303012)the National Natural Science Foundation of China(Grant No.51775101).
文摘Pre-stressed dry grinding can result in a hardened layer on the part surface while the surface residual stress is controlled.Considering the factors of the thermal field,pre-stress,and microstructural transformation,a proximate model of surface residual stress for pre-stressed dry grinding is established using the ANSYS finite element simulation method and verified through experiment.The variation laws and mechanisms of the residual stress along with the grinding parameters are revealed.Under the comprehensive effect of pre-stress and phase transformation,the residual stress of pre-stressed dry grinding is revealed mainly as compressive stress.This increases as the pre・stress and grinding depth increase.Under the coupling effect,pre-stress has larger influence on the residual stress than the grinding depth.The model can analyze and predict the residual stress of pre-stressed dry grinding in general.