期刊文献+
共找到679篇文章
< 1 2 34 >
每页显示 20 50 100
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables 被引量:2
1
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine Fault Mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
Numerical and analytical simulation of the structural behaviour of fully grouted cable bolts under impulsive loading 被引量:10
2
作者 Faham Tahmasebinia Chengguo Zhang +2 位作者 Ismet Canbulat Onur Vardar Serkan Saydam 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第5期807-811,共5页
Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination ... Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models. 展开更多
关键词 cable boltS YIELDING support Coal BURST SHEAR dynamic loading
下载PDF
Mechanical properties and reinforcement effect of jointed rock mass with pre-stressed bolt 被引量:9
3
作者 YANG Wen-dong LUO Guang-yu +4 位作者 BO Chun-jie WANG Ling Lü Xian-xian WANG Ying-nan WANG Xue-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3513-3530,共18页
Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock mas... Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock masses with pre-stressed bolts,in this study,uniaxial compression tests were conducted on specimens with different anchoring types and flaw inclination angles.ABAQUS software was used to verify and supplement the laboratory tests.The laws of the uniaxial compressive strength(UCS)obtained from the numerical simulations and laboratory tests were consistent.The results showed that under the same flaw angle,both the UCS and elastic modulus of the bolted specimens were improved compared with those of the specimens without bolts and the improvements increased with an increase in the bolt pre-stress.Under the same anchoring type,the UCS and elastic modulus of the jointed specimens increased with an increase in the flaw angle.The pre-stressed bolt could not only restrain the slip of the specimens along the flaw surface but also change the propagation mode of the secondary cracks and limit the initiation of cracks.In addition,the plot contours of the maximum principal strain and the Tresca stress of the numerical models were influenced by the anchoring type,flaw angle,anchoring angle and bolt position. 展开更多
关键词 jointed rock mass pre-stressed bolt laboratory test numerical simulation
下载PDF
Initial pre-stress finding procedure and structural performance research for Levy cable dome based on linear adjustment theory 被引量:4
4
作者 ZHANG Li-mei CHEN Wu-jun DONG Shi-lin 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第9期1366-1372,共7页
The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented here... The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome. 展开更多
关键词 Linear adjustment theory cable-strut structure Initial pre-stress Levy cable dome Structural performances analysis
下载PDF
Experimental Study on Methane Explosion Ignited by Sparks of Cable Bolt Breakage 被引量:3
5
作者 马文顶 许家林 张少华 《Journal of China University of Mining and Technology》 2004年第2期184-188,共5页
An experimental device was designed for studying methane explosion ignited by sparks of cable bolt breakage. With the methane concentration being in explosion range, a series of experiments were conducted to study the... An experimental device was designed for studying methane explosion ignited by sparks of cable bolt breakage. With the methane concentration being in explosion range, a series of experiments were conducted to study the law of spark generation during cable bolt breakage and the probability of methane explosion caused by the spark. The results show that the probability of generating sparks during cable bolt breakage is 50%. The spark generated by the breakage of steel cable bolt strand can't ignite a methane explosion. A detection was carried out using infrared-ray imaging apparatus (IRIA) to measure temperature of the spark generated by cable bolt breakage. It is indicated that the maximum temperature of the spark generated by cable bolt breakage is far less than the required ignition temperature for a methane explosion. 展开更多
关键词 cable bolt friction SPARK METHANE explosion infrared thermo-imaging instrument
下载PDF
Initial Pre-stress Finding and Structural Behaviors Analysis of Cable Net Based on Linear Adjustment Theory 被引量:4
6
作者 任涛 陈务军 付功义 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第2期155-160,共6页
The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method ... The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method is the cornerstone of analytical formula,and then introduced into linear adjustment theory;the least square least norm solution,the optimized initial pre-stress,is yielded.The initial pre-stress and structural performances of a particular single-layer saddle-shaped cable-net structure were analyzed with the developed method,which is proved to be efficient and correct.The modal analyses were performed with respect to various pre-stress levels.Finally,the structural performances were investigated comprehensively. 展开更多
关键词 linear adjustment theory tensile cable-net structure initial pre-stress single-layer saddle-shaped cable net structural performances analysis
下载PDF
Microbiologically influenced corrosion of cable bolts in underground coal mines:The effect of Acidithiobacillus ferrooxidans 被引量:3
7
作者 H.Chen O.Kimyon +5 位作者 H.Lamei Ramandi M.Manefield A.H.Kaksonen C.Morris A.Crosky S.Saydam 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期357-363,共7页
Reports on corrosion failure of cable bolts,used in mining and civil industries,have been increasing in the past two decades.The previous studies found that pitting corrosion on the surface of a cable bolt can initiat... Reports on corrosion failure of cable bolts,used in mining and civil industries,have been increasing in the past two decades.The previous studies found that pitting corrosion on the surface of a cable bolt can initiate premature failure of the bolt.In this study,the role of Acidithiobacillus ferrooxidans(A.ferrooxidans)bacterium in the occurrence of pitting corrosion in cable bolts was studied.Stressed coupons,made from the wires of cable bolts,were immersed in testing bottles containing groundwater collected from an underground coal mine and a mixture of A.ferrooxidans and geomaterials.It was observed that A.ferrooxidans caused pitting corrosion on the surface of cable bolts in the near-neutral environment.The presence of geomaterials slightly affected the p H of the environment;however,it did not have any significant influence on the corrosion activity of A.ferrooxidans.This study suggests that the common bacterium A.ferrooxidans found in many underground environments can be a threat to cable bolts'integrity by creating initiation points for other catastrophic failures such as stress corrosion cracking. 展开更多
关键词 cable bolt failure Microbiologically influenced corrosion Acidithiobacillus ferrooxidans
下载PDF
Depillaring of total thickness of a thick coal seam in single lift using cable bolts:A case study 被引量:1
8
作者 Kumar Rakesh Mishra Arvind Kumar +3 位作者 Singh Arun Kumar Singh Amit Kumar Ram Sahendr Singh Rajendr 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期223-233,共11页
Explaining fundamentals of application of cable bolting for a thick seam depillaring,this paper summarizes the results of field studies conducted during adoption of this approach in more than fifteen panels of Madhusu... Explaining fundamentals of application of cable bolting for a thick seam depillaring,this paper summarizes the results of field studies conducted during adoption of this approach in more than fifteen panels of Madhusudanpur 7 pit and incline mine.Nearly 7.0 m thick Kajora top coal seam of this mine is developed on pillars along the floor horizon to an average height of 3.0 m,leaving a coal band of around 4.0 m along the roof.Analysis of procured core samples showed that roof strata are easily caveable with a caveability index value of around 2000 only.Easily caveable overlying strata and shallow depth of cover alleviated most of the expected strata mechanics problems of the thick seam mining.However,extraction of total thickness at shallow cover caused differential-subsidence and cracks on the surface.These manifestations were immediately tackled to avoid creation of a breathing path for spontaneous heating in the extracted area. 展开更多
关键词 cable bolting Thick seam depillaring Extraction height Pillar stability Caveability index
下载PDF
Theory,technology and application of grouted bolting in soft rock roadways of deep coal mines
9
作者 Hongpu Kang Jianwei Yang +4 位作者 Pengfei Jiang Fuqiang Gao Wenzhou Li Jiafeng Li Huiyuan Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1463-1479,共17页
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous... The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated. 展开更多
关键词 deep coal mine soft rock roadway grouted bolting rock bolt and cable grouting material high-pressure splitting grouting collaborative control technology
下载PDF
Applied on bolting-cable anchor support of full-seam roadway in weaker thick coal seam
10
作者 赵庆彪 张生华 郭励生 《Journal of Coal Science & Engineering(China)》 2003年第1期61-66,共6页
The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting... The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting results are briefly summarized. 展开更多
关键词 full seam roadway bolting cable anchor support dynamic monitoring
下载PDF
High prestress truss cable support principle and its application in large cross section coal roadway 被引量:1
11
作者 姚精明 何富连 萧潇 《Journal of Coal Science & Engineering(China)》 2007年第1期18-21,共4页
With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce suppor... With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce support effect not obvious for ordinary bolt(cable). While bounding point and support structure of the truss cable is in vertex angle of roadway, and supplies coal-rock layers in bounding area with the horizontal and vertical pressure, so it settles the support problems in large cross section coal roadway. From the point of view of mechanics, gave emphasis on the invalid mechanics of ordinary bolt (cable) in large cross section coal roadway and supported mechanics of prestress truss cable. The author successfully used this technique in Wuyang Mine, and had the huge economic efficiency and the social benefit. 展开更多
关键词 truss cable large cross section roadway ordinary bolt cable PRESTRESS
下载PDF
Test analysis of stress characteristics on reinforcing rock slope with group anchorage cable 被引量:1
12
作者 ZHANG Liang-liang XIA Yuan-you +2 位作者 GU Jin-cai LI Qi-min CHEN Chen 《Journal of Coal Science & Engineering(China)》 2010年第1期23-28,共6页
To research the reinforcement effect of a rock slope with group anchorage cables and the stress characteristics of pre-stressed anchorage cables in the fractured surface, the rock slope calculated model of a wedge blo... To research the reinforcement effect of a rock slope with group anchorage cables and the stress characteristics of pre-stressed anchorage cables in the fractured surface, the rock slope calculated model of a wedge block within the double-slide face was established by using the finite difference software according to the actual slope project combined with indoor model test. The pre-stress loss rule of the anchorage cable and the distribution of axial force and the force-transferring mechanism of the anchorage cable were analyzed during simulation. Also, based on the displacement contour and the safety factor of the calculated results, the quantitative analysis for the reinforcement ef- fect of the rock slope with group pre-stressed anchorage cable was discovered. The results computed by the software conform with the data in the experiment, which can prove the effectiveness and correctness of parameter selection and model building. Keywords group anchorage reinforcement, rock slope, joint fissure, pre-stressed anchorage cable, stress characteristics 展开更多
关键词 group anchorage reinforcement rock slope joint fissure pre-stressed anchorage cable stress characteristics
下载PDF
马鞍山长江公铁大桥Z3号桥塔施工关键技术 被引量:1
13
作者 潘博 李维 刘爱林 《世界桥梁》 北大核心 2024年第2期29-35,共7页
巢马城际铁路马鞍山长江公铁大桥主航道桥为(112+392+2×1120+392+112)m三塔钢桁梁斜拉桥,Z3号桥塔为超高多肢钢-混组合塔,高308 m。上塔柱钢结构高87.5 m,分13个吊装节段,最重505 t;中、下塔柱混凝土结构高217.5 m,分38个节段液压... 巢马城际铁路马鞍山长江公铁大桥主航道桥为(112+392+2×1120+392+112)m三塔钢桁梁斜拉桥,Z3号桥塔为超高多肢钢-混组合塔,高308 m。上塔柱钢结构高87.5 m,分13个吊装节段,最重505 t;中、下塔柱混凝土结构高217.5 m,分38个节段液压爬模施工;钢-混结合段高3 m,内部采用PBL键+剪力钉+高强度钢锚杆+高强度混凝土结构形式。在中塔柱设置钢管临时横撑控制塔柱线形及应力;下横梁采用落地支架法分层施工,与对应塔柱同步浇筑;钢-混结合段混凝土采用C60细石补偿收缩混凝土+高强度灌浆料,保证了混凝土施工质量;采用工厂“2+1”立体匹配制造、“提升站+运输栈桥”钢塔节段转运等技术,并研制15000 t•m超大型塔吊,实现了钢塔柱大节段的制造、整体滩地运输和吊装;钢塔节段间采用栓焊组合连接形式,通过设置工艺隔板、双面坡口等措施控制了钢塔焊接变形;利用定位桁架临时锁定钢塔合龙段实现了钢塔的精确合龙,定位桁架受力及变形均满足要求。 展开更多
关键词 斜拉桥 钢-混组合桥塔 超高多肢 钢-混结合段 整体吊装 钢塔合龙 栓焊组合连接 施工技术
下载PDF
复合扩管式锚索恒阻器的研发与试验研究
14
作者 贾后省 张志明 +4 位作者 刘少伟 王林 江文渊 彭博 付孟雄 《煤炭学报》 EI CAS CSCD 北大核心 2024年第6期2604-2614,共11页
深部高应力、软弱围岩、强烈采动影响等条件下的巷道围岩频繁出现大变形,此类围岩大变形支护可控性普遍较差,常规锚索因其较低的延伸率无法适应巷道大变形而大量破断或锚固失效,导致巷道出现冒顶隐患。针对此类问题,研发了一种与常规锚... 深部高应力、软弱围岩、强烈采动影响等条件下的巷道围岩频繁出现大变形,此类围岩大变形支护可控性普遍较差,常规锚索因其较低的延伸率无法适应巷道大变形而大量破断或锚固失效,导致巷道出现冒顶隐患。针对此类问题,研发了一种与常规锚索配合使用的复合扩管式恒阻器,其结构主要由止进端盖、扩径管、一体式托盘和锥式锁具组成,通过锥式锁具克服扩径管“扩胀—摩削”所产生的近似恒定的复合阻力,实现围岩大变形过程中的锚索支护阻力恒定,通过理论分析、数值模拟和静力拉伸试验等综合研究方法,系统分析和试验了复合扩管式恒阻器的力学特性和工作稳定性,掌握了该恒阻器扩径增量、锁具锥角对扩径管变形及恒阻器复合阻力的影响规律。试验结果表明:恒阻器复合阻力主要分为阻力快升段和近恒定阻力段2个过程,且近恒定阻力段作为主要阶段达到试验全程的85%~90%;锁具锥角、扩径增量直接影响了扩径管变形及恒阻器力学特性,锁具锥角小于20°时,扩径管变形均匀且恒阻器复合阻力发挥稳定,而扩径增量则决定了恒阻器复合阻力的大小,可通过调整扩径增量获取需要的锚索恒阻力;Ф17.8 mm锚索条件下,当锁具锥角为15°、扩径增量为5 mm时,恒阻器恒定阻力约为265.92 kN,Ф21.8 mm锚索条件下,当锁具锥角为15°,扩径增量为8 mm时,恒阻器恒定阻力约为424.15 kN,且工作状态稳定可靠,可较好的符合大变形巷道的恒阻支护要求。此外,该恒阻器还具有工作稳定性强、恒阻行程及阻力可调、结构简单、安装便捷等特点,是大变形巷道围岩控制技术的有效补充。 展开更多
关键词 大变形巷道 复合扩管 锚索恒阻 拉伸试验
下载PDF
基于小波变换的锚杆锚索测力仪设计
15
作者 吴士涛 邹坤 +4 位作者 杨婕 张晶晶 赵玉斌 汤建泉 王晓明 《煤矿安全》 CAS 北大核心 2024年第2期235-243,共9页
针对井下存在的电磁干扰,会对测力仪采集到的运放端的电压信号存在较大的干扰,进而对传感器测得的压力值准确性产生影响的问题;设计了基于小波变换的锚杆锚索测力仪。以国产HC32L176单片机作为主控芯片,对运放端的电压信号进行AD采集;... 针对井下存在的电磁干扰,会对测力仪采集到的运放端的电压信号存在较大的干扰,进而对传感器测得的压力值准确性产生影响的问题;设计了基于小波变换的锚杆锚索测力仪。以国产HC32L176单片机作为主控芯片,对运放端的电压信号进行AD采集;选用合适的小波基函数、分解层数、阈值规则及阈值函数,对含噪信号进行分解,滤除不同层的高频成分,再对信号重构,得到去噪后的信号。Matlab仿真与实际测试结果表明:小波变换可以对采集的电压信号实现很好去噪,提高了锚杆锚索测力仪的可靠性与稳定性。 展开更多
关键词 锚杆锚索测力仪 矿压在线监测 电磁干扰 小波变换 信号去噪 信号重构 信号采集
下载PDF
开挖补偿法防控深部地下岩爆灾害——引汉济渭工程秦岭输水隧洞案例分析 被引量:1
16
作者 Jie Hu Manchao He +4 位作者 Hongru Li Zhigang Tao Dongqiao Liu Tai Cheng Di Peng 《Engineering》 SCIE EI CAS CSCD 2024年第3期154-163,共10页
Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control... Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control remains challenging in the engineering field.In this study,the mechanism of excavation-induced rockburst was briefly described,and it was proposed to apply the excavation compensation method(ECM)to rockburst control.Moreover,a field test was carried out on the Qinling Water Conveyance Tunnel.The following beneficial findings were obtained:Excavation leads to changes in the engineering stress state of surrounding rock and results in the generation of excess energy DE,which is the fundamental cause of rockburst.The ECM,which aims to offset the deep excavation effect and lower the risk of rockburst,is an active support strategy based on high pre-stress compensation.The new negative Poisson’s ratio(NPR)bolt developed has the mechanical characteristics of high strength,high toughness,and impact resistance,serving as the material basis for the ECM.The field test results reveal that the ECM and the NPR bolt succeed in controlling rockburst disasters effectively.The research results are expected to provide guidance for rockburst support in deep underground projects such as Sichuan-Xizang Railway. 展开更多
关键词 ROCKBURST Excavation compensation method pre-stressed support Negative Poisson’s ratio bolt Tunnel boring machine
下载PDF
高延伸率锚索动态力学特性及工程应用
17
作者 付玉凯 吴拥政 +2 位作者 周鹏赫 孙卓越 李军臣 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第2期49-62,共14页
传统锚索延伸率低、抗冲击能力差,在强冲击载荷作用下易出现脆性破断失效,导致巷道出现冒顶、冲击地压事故等问题。基于此,自主开发了具有高强度、高延伸率及高抗冲击等特性的锚索,采用实验室试验、理论分析及现场试验等综合手段,分析... 传统锚索延伸率低、抗冲击能力差,在强冲击载荷作用下易出现脆性破断失效,导致巷道出现冒顶、冲击地压事故等问题。基于此,自主开发了具有高强度、高延伸率及高抗冲击等特性的锚索,采用实验室试验、理论分析及现场试验等综合手段,分析了高延伸率锚索的静、动载力学性能,研究了高延伸率锚索化学成分、金相组织和夹杂物与普通锚索的差异,提出了高延伸率锚索支护吸能原理,并将高延伸率锚索在现场进行了应用。研究结果表明:静载作用下,高延伸率锚索抗拉强度为1790 MPa,最大力总延伸率8.1%,是普通锚索的1.61~2.25倍;动载作用下,高延伸率锚索钢丝不易散开,破断载荷与普通锚索基本相同,断后伸长率分别是锚索A、B、C的1.82倍、1.68倍和1.52倍,单位长度吸能量分别是锚索A、B、C的2.54倍、1.99倍和1.70倍,高延伸率锚索塑性变形能力更强,吸能能力更高。高延伸率锚索通过在冶炼和轧制工艺过程中控制有害化学元素和有益化学元素含量、细化金相组织及减少夹杂物尺寸和数量等方式提高了钢丝的塑性变形能力,进而提高锚索整体的抗冲击性能。高延伸率锚索在现场应用过程中经受了多次大能量冲击后,巷道支护效果良好,高延伸率锚索未出现破断,有效控制了巷道冲击破坏。 展开更多
关键词 冲击地压 深部巷道 锚杆支护 落锤 高延伸率锚索
下载PDF
温州瓯江北口大桥施工期索夹抗滑移控制
18
作者 厉勇辉 彭成明 +1 位作者 彭志辉 徐鑫 《桥梁建设》 EI CSCD 北大核心 2024年第2期131-138,共8页
温州瓯江北口大桥为主跨2×800 m的三塔四跨双层钢桁梁悬索桥,主跨钢桁梁采用1000 t缆载吊机大节段吊装,施工期索夹受力大、索夹螺杆紧固力损失大,索夹滑移风险高。为给施工期索夹滑移风险评估和抗滑移控制措施提供依据,在《公路悬... 温州瓯江北口大桥为主跨2×800 m的三塔四跨双层钢桁梁悬索桥,主跨钢桁梁采用1000 t缆载吊机大节段吊装,施工期索夹受力大、索夹螺杆紧固力损失大,索夹滑移风险高。为给施工期索夹滑移风险评估和抗滑移控制措施提供依据,在《公路悬索桥设计规范》(JTG/T D65-05—2015)索夹抗滑移系数计算公式的基础上,考虑索夹上临时荷载、主缆轴力增加引起的主缆直径变小和主缆丝股重新排列、螺杆时变效应造成的索夹螺杆紧固力损失,提出适用于大跨悬索桥施工期的索夹抗滑移系数计算方法,分析主要参数对施工期索夹抗滑移系数的影响,并评估该桥施工期索夹抗滑移风险,提出索夹抗滑移控制措施。结果表明:钢桁梁吊装过程中,索夹倾角变化大,应采用当前施工阶段索夹倾角计算施工期索夹抗滑移系数,主缆轴力增加引起主缆直径变小是造成索夹滑移的主要原因之一;该桥除主跨跨中钢桁梁节段对应索夹抗滑移系数满足规范要求外,其余索夹抗滑移系数均不满足规范要求。根据索夹滑移风险评估结果,采取紧固索夹螺杆的抗滑移控制措施,并明确了该桥索夹螺杆紧固次数和时机。该桥采取索夹抗滑移控制措施后,施工过程中索夹均未出现滑移现象。 展开更多
关键词 悬索桥 索夹滑移 抗滑移系数 主缆轴力 螺杆紧固力 索夹倾角 紧固 滑移控制
下载PDF
长锚杆/锚索改善深埋大跨度隧道初支结构受力试验研究
19
作者 周阳 来弘鹏 +3 位作者 王兴广 孔军 李志磊 洪秋阳 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第4期853-863,共11页
针对深埋大跨度软岩隧道拱脚及拱顶处初支开裂、钢架变形过大问题,提出了局部增设长锚杆或锚索的支护技术,以实现对该类隧道初支结构受力的调节改善。基于课题组自主研发的隧道结构性能测试平台,对比分析了同等围岩荷载作用下系统锚杆... 针对深埋大跨度软岩隧道拱脚及拱顶处初支开裂、钢架变形过大问题,提出了局部增设长锚杆或锚索的支护技术,以实现对该类隧道初支结构受力的调节改善。基于课题组自主研发的隧道结构性能测试平台,对比分析了同等围岩荷载作用下系统锚杆支护与多类长锚杆/锚索支护方案的初期支护结构受力变形特征,研究了不同环向间距与布设范围的长锚杆/锚索支护效果。研究结果表明:(1)常规支护时,大跨度隧道初期支护整体呈压扁趋势,拱顶内侧与拱脚外侧承受结构最大弯矩而最先开裂,仰拱内侧拉裂后模型加速变形进而引起结构整体失稳破坏;(2)4种增设长锚杆或锚索支护方案下,初支拱顶处结构安全系数分别为常规支护体系的4.59,2.12,1.96,1.80倍,拱脚处结构安全系数分别为常规支护的5.23,2.80,2.34,2.37倍;(3)在拱部120°范围以2 m环向间距布设长锚杆对初支结构内力改善效果最佳,支护点轴向强拉力产生的局部负弯矩组合效应抵消了拱顶处较大正弯矩;(4)不同位置长锚杆/锚索支护力整体呈从拱顶处至拱肩侧先减小后增大的规律。 展开更多
关键词 隧道工程 大跨度隧道 长锚杆/锚索 模型试验 破坏特征 支护效果
下载PDF
Failure mechanism and safety control technology of a composite strata roadway in deep and soft rock masses:a case study
20
作者 ZHAO Chengwei ZHOU Hui +3 位作者 SUN Xiaoming ZHANG Yong MIAO Chengyu WANG Jian 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2427-2444,共18页
The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challe... The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways. 展开更多
关键词 3DEC Composite strata roadway Soft rock NPR bolt and cable Asymmetric large deformation
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部