期刊文献+
共找到193,635篇文章
< 1 2 250 >
每页显示 20 50 100
Mathematical framework of nonlinear elastic waves propagating in pre-stressed media
1
作者 Jiangcheng CAI Mingxi DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1705-1716,共12页
Acoustic nonlinearity holds potential as a method for assessing material stress.Analogous to the acoustoelastic effect,where the velocity of elastic waves is influenced by third-order elastic constants,the propagation... Acoustic nonlinearity holds potential as a method for assessing material stress.Analogous to the acoustoelastic effect,where the velocity of elastic waves is influenced by third-order elastic constants,the propagation of nonlinear acoustic waves in pre-stressed materials would be influenced by higher-order elastic constants.Despite this,there has been a notable absence of research exploring this phenomenon.Consequently,this paper aims to establish a theoretical framework for governing the propagation of nonlinear acoustic waves in pre-stressed materials.It delves into the impact of pre-stress on higher-order material parameters,and specifically examines the propagation of one-dimensional acoustic waves within the contexts of the uniaxial stress and the biaxial stress.This paper establishes a theoretical foundation for exploring the application of nonlinear ultrasonic techniques to measure pre-stress in materials. 展开更多
关键词 acoustoelastic effect nonlinear elastic wave pre-stress medium higher-order elastic constant
下载PDF
Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property
2
作者 Xiaoxiao Wang Qingsong Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期111-118,共8页
Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid ... Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance. 展开更多
关键词 ferritic steels coherent particles MICROSTRUCTURE compression test work hardening
下载PDF
Hybrid flexural components: Testing pre-stressed steel and GIFRP bars together as reinforcement for flexural members
3
作者 Mohammed FARUQI Oved I. MATA Francisco AGUINIGA 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2018年第3期352-360,共9页
Concrete members historically have used either pre-stressed steel or steel bars. In recent years there has been an increased interest in the use of fiber reinforced polymer (FRP) materials. However, the flexure beha... Concrete members historically have used either pre-stressed steel or steel bars. In recent years there has been an increased interest in the use of fiber reinforced polymer (FRP) materials. However, the flexure behavior of a hybrid system reinforced by the combination of pre-stressed steel and glass fiber reinforced (GFRP) is still relatively unknown. The purpose of this work is to study this. Two slabs of 100 and 150-millimeter thickness, with a span of 2.1 m reinforced with both pre-stressing steel and GFRP were constructed and tested to failure using ACI 318-11 and ACI 440.1 R-15. The concrete had strength of 31 MPa and the slabs were respectively reinforced with 5#4 bars and 3#5 bars. Each slab had 37.41 mm2 prestressing wire with a failure stress of 1722.5 MPa. The experimental flexural strength and deflection of slabs were compared with their respective sizes theoretical slabs. The theoretical slabs were either reinforced with pre-stressed steel or GFRP rebars, or a hybrid system. It was found that the hybrid system produces better results. 展开更多
关键词 Partial pre-stressing composite structures GFRP bars
原文传递
Mechanical properties and reinforcement effect of jointed rock mass with pre-stressed bolt 被引量:9
4
作者 YANG Wen-dong LUO Guang-yu +4 位作者 BO Chun-jie WANG Ling Lü Xian-xian WANG Ying-nan WANG Xue-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3513-3530,共18页
Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock mas... Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock masses with pre-stressed bolts,in this study,uniaxial compression tests were conducted on specimens with different anchoring types and flaw inclination angles.ABAQUS software was used to verify and supplement the laboratory tests.The laws of the uniaxial compressive strength(UCS)obtained from the numerical simulations and laboratory tests were consistent.The results showed that under the same flaw angle,both the UCS and elastic modulus of the bolted specimens were improved compared with those of the specimens without bolts and the improvements increased with an increase in the bolt pre-stress.Under the same anchoring type,the UCS and elastic modulus of the jointed specimens increased with an increase in the flaw angle.The pre-stressed bolt could not only restrain the slip of the specimens along the flaw surface but also change the propagation mode of the secondary cracks and limit the initiation of cracks.In addition,the plot contours of the maximum principal strain and the Tresca stress of the numerical models were influenced by the anchoring type,flaw angle,anchoring angle and bolt position. 展开更多
关键词 jointed rock mass pre-stressed bolt laboratory test numerical simulation
下载PDF
Strength weakening effect of high static pre-stressed granite subjected to low-frequency dynamic disturbance under uniaxial compression 被引量:6
5
作者 Wu-xing WU Feng-qiang GONG Quan JIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2353-2369,共17页
This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granit... This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granite under static loading,70%,80%,and 90%of UCS were selected as the initial high static pre-stress(σ_(p)),and then the pre-stressed rock specimens were disturbed by sinusoidal stress with amplitudes of 30%,20%,and 10%of UCS under low-frequency frequencies(f)of 1,2,5,and 10 Hz,respectively.The results show that the rockburst failure of pre-stressed granite is caused by low-frequency disturbance,and the failure strength is much lower than UCS.When theσp or f is constant,the specimen strength gradually decreases as the f or σ_(p) increases.The experimental study illustrates the influence mechanism of the strength weakening effect of high static pre-stress rocks under low-frequency dynamic disturbance,that is,high static pre-stress is the premise and leading factor of rock strength weakening,while low-frequency dynamic disturbance induces rock failure and affects the strength weakening degree. 展开更多
关键词 deep rock high static pre-stress low-frequency dynamic disturbance strength weakening effect uniaxial compression ROCKBURST
下载PDF
RC beam strengthened with pre-stressed CFP under the secondary load 被引量:5
6
作者 LONG Bang-yun YUAN Guang-lin ZHU Dan-yu 《Journal of China University of Mining and Technology》 EI 2008年第4期618-622,共5页
Feasibility of using pre-stressed carbon fiber plates to strengthen reinforced concrete beams was studied. Based on the characteristics of carbon fiber plates, we developed a pre-stress clamp and a device for applying... Feasibility of using pre-stressed carbon fiber plates to strengthen reinforced concrete beams was studied. Based on the characteristics of carbon fiber plates, we developed a pre-stress clamp and a device for applying the pre-stress. Contrast tests were conducted between ordinary carbon fiber plates and a pre-stressed carbon fiber plate and between secondary loaded carbon fiber plates and a concrete beam strengthened with a secondary loaded carbon fiber plate. On this basis, we analyzed the failure pattern, the width of cracks and their distribution, the cracking load, the yield load, the limit load and the relation between load and deflec- tion. The results indicate that using pre-stressed carbon fiber plates to strengthen concrete beams is feasible and effective. 展开更多
关键词 pre-stress CFP secondary load strengthening RC beam
下载PDF
Flexural Property of String Beam of Pre-Stressed Glulam Based on Influence of Regulation and Control 被引量:2
7
作者 Nan Guo Wenbo Wang Hongliang Zuo 《Structural Durability & Health Monitoring》 EI 2019年第2期143-179,共37页
Applying pre-stress in glulam beam can reduce its deformation and make full use of the compressive strength of wood.However,when the glulam with low strength and the pre-stressed steel with high strength form combined... Applying pre-stress in glulam beam can reduce its deformation and make full use of the compressive strength of wood.However,when the glulam with low strength and the pre-stressed steel with high strength form combined members,materials of high strength can’t be fully utilized.Therefore,this study puts forward the idea of regulating and controlling string beam of pre-stressed glulam.By regulating and controlling the pre-stress,a part of the load borne by the wood is allocated to the pre-stressed tendon,which is equivalent to completing a redistribution of internal force,thus realizing the repeated utilization of the wood strength and the full utilization of the strength of the high-strength pre-stressed tendon.The bending experiments of 10 beams under 5 working conditions are carried out.The failure mode,bearing capacity and deformation of the beams are analyzed.The results show that 90%of beams are deformed under compression.The ultimate load of the regulated and controlled beam is obviously larger than that of the unregulated beam,and the ultimate load of the beam increases with the increase of the degree of regulation and control.Compared with that of the unregulated beams,the ultimate load of beams regulated by 7.5%-30%increases by 25.42%-65.08%,and the regulated and controlled effect is obvious.With the increase of the regulation and control amplitude of pre-stress,the stiffness of string beam of pre-stressed glulam increases.In addition,with the increase of the regulation and control amplitude,the compression height of the beam increases before the failure,and it reaches the state of full-section compression at the time of failure,giving full play to the compressive property of the glulam.At the end of the experiment,the constitutive relation which can reflect the anisotropy of the wood is established combined with the experimental data.The finite element analysis of the beam under 7 working conditions is carried out by using ABAQUS finite element program,and the influence of the regulation and control amplitude on the stress distribution and ultimate bearing capacity of the beam is discussed. 展开更多
关键词 STRING beam of GLULAM FLEXURAL PROPERTY experimental study pre-stress REGULATION and control
下载PDF
Design and Preparation of High Elastic Modulus Self-compacting Concrete for Pre-stressed Mass Concrete Structures 被引量:2
8
作者 祝雯 CHEN Yang +4 位作者 LI Fangxian ZHANG Tongsheng HU Jie 韦江雄 YU Qijun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期563-573,共11页
Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be s... Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d. 展开更多
关键词 self-compacting concrete pre-stressed mass structure high elastic modulus adiabatic temperature rise drying shrinkage
下载PDF
Pre-Stressed Rope Reinforced Anti-Sliding Pile 被引量:1
9
作者 XU Jun WANG Chenghua 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第4期887-891,共5页
Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performan... Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performance into full play, and to treat with landslide fast and economically. The difference between them is that the pre-stressed rope will transfix the whole anti- sliding pile through a prearranged pipe in this structure. The working mechanics, the design method and economic benefit are studied. The results show that the pre-stressed rope reinforced anti-sliding pile can treat with the small and middle landslides or high slopes well and possess the notable advantage of technology and economic. 展开更多
关键词 pre-stressed rope anti-sliding pile composite anti-sliding structure
下载PDF
Dynamic analysis of double-layer and pre-stressed multi-limb six-axis force sensor 被引量:1
10
作者 Wang Zhijun He Jing +1 位作者 Cui Bingyan Li Zhanxian 《High Technology Letters》 EI CAS 2019年第2期189-196,共8页
In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of six-axis force sen... In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of six-axis force sensor which is installed on the end-effectors of intelligent robots will have influence on the veracity of detection and judgment to working environment contact force by intelligent robots directly. In this paper, dynamic analysis to double-layer and pre-stressed multi-limb six-axis force sensor is conducted. First, the structure of the sensor is introduced, and the limb number is confirmed by introducing the related definitions of convex analysis. Then, based on vibration of multiple-degree-of-freedom system, a mechanical vibration simplified model of double-layer and pre-stressed multiple limb six-axis force sensor is set up. After that, movement differential equations of sensor and the response of analytical expression are deduced, and the movement differential equations is solved. Finally, taking the double-layer and pre-stressed seven limb six-axis force sensor as an example, numerical calculation and simulation of deriving result is conducted, which verify the correctness and feasibility of the theoretical analysis. 展开更多
关键词 six-axis force sensor multi-limb pre-stressed mechanical vibration dynamic analysis
下载PDF
Experimental study on seismic behavior of circular RC columns strengthened with pre-stressed FRP strips 被引量:1
11
作者 Zhou Changdong Lu Xilin +1 位作者 Li Hui Tian Teng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期625-642,共18页
Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hy... Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hysteresis effect in this strengthening method, and pre-tensioning the FRP can overcome this problem. This paper presents test results of 25 circular RC columns strengthened with pre-stressed FRP strips under low cyclic loading. The pre-stressing of the FRP strips, types of FRP strips and longitudinal reinforcement, axial load ratio, pre-damage degree and surface treatments of the specimens are considered as the primary factors in the tests. According to the failure modes and hysteresis curves of the specimens, these factors are analyzed to investigate their effect on bearing capacity, ductility, hysteretic behavior, energy dissipation capacity and other important seismic behaviors. The results show that the initial lateral confined stress provided by pre-stressed FRP strips can effectively inhibit the emergence and development of diagonal shear cracks, and change the failure modes of specimens from brittle shear failure to bending or bending-shear failure with better ductility. As a result, the bearing capacity, ductility, energy dissipation capacity and deformation capacity of the strengthened specimens are all significantly improved. 展开更多
关键词 experimental study circular reinforced concrete column pre-stress fiber reinforced polymer axial loadratio seismic behavior active confinement
下载PDF
A Statistical Analysis of the Modulus of Elasticity and Compressive Strength of Concrete C45/55 for Pre-stressed Precast Beams 被引量:2
12
作者 Jiri Kolisko Petr Hunka Karel Jung 《Journal of Civil Engineering and Architecture》 2012年第11期1571-1576,共6页
Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test re... Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test results of cylinders 150 ~ 300 mm in size. The tests have been running in laboratories of the Klokner Institute. A single worker took all specimens throughout the period, and the subsequent measurements of the static modulus of elasticity and the compressive strength of the concrete were performed. The measurements were made at the age of 28 days after specimens casting, and only one testing machine with the same capping method was used. Suitable theoretical models of division are determined on the basis of tests in good congruence, with the use of Z2 and the Bernstein criterion. A set of concrete compressive strength (carried out on 133 test results of cylinders 150 ~ 300 mm after test of static modulus of elasticity) shows relatively high skewness in this specific case. This cause that limited beta distribution is better than generally recommended theoretical distribution for strength the normal or lognormal. The modulus of elasticity is not significantly affected due to skewness because the design value is based on mean value. 展开更多
关键词 Concrete compression strength modulus of elasticity prefabricated pre-stressed bridge beams goodness-of-fit test statistical assessment.
下载PDF
Development and prospects of molten steel deoxidation in steelmaking process 被引量:2
13
作者 Zhongliang Wang Yanping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期18-32,共15页
In the long traditional process of steelmaking,excess oxygen is blown into the converter,and alloying elements are used for deoxidation.This inevitably results in excessive deoxidation of products remaining within the... In the long traditional process of steelmaking,excess oxygen is blown into the converter,and alloying elements are used for deoxidation.This inevitably results in excessive deoxidation of products remaining within the steel liquid,affecting the cleanliness of the steel.With the increasing requirements for steel performance,reducing the oxygen content in the steel liquid and ensuring its high cleanliness is necessary.After more than a hundred years of development,the total oxygen content in steel has been reduced from approximately 100×10^(-6)to approximately 10×10^(-6),and it can be controlled below 5×10^(-6)in some steel grades.A relatively stable and mature deoxidation technology has been formed,but further reducing the oxygen content in steel is no longer significant for improving steel quality.Our research team developed a deoxidation technology for bearing steel by optimizing the entire conventional process.The technology combines silicon–manganese predeoxidation,ladle furnace diffusion deoxidation,and vacuum final deoxidation.We successfully conducted industrial experiments and produced interstitial-free steel with natural decarbonization predeoxidation.Non-aluminum deoxidation was found to control the oxygen content in bearing steel to between 4×10^(-6) and 8×10^(-6),altering the type of inclusions,eliminating large particle Ds-type inclusions,improving the flowability of the steel liquid,and deriving a higher fatigue life.The natural decarbonization predeoxidation of interstitial-free steel reduced aluminum consumption and production costs and significantly improved the quality of cast billets. 展开更多
关键词 steel deoxidation DEOXIDIZER metallurgical equipment bearing steel IF steel
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
14
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag 被引量:2
15
作者 Zihang Yan Qing Zhao +3 位作者 Chengzhi Han Xiaohui Mei Chengjun Liu Maofa Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期292-300,共9页
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen... Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%. 展开更多
关键词 stainless steel slag SPINEL CHROMIUM waste remediation ferrous oxide
下载PDF
An Integrated Analysis on the Synergistic Reduction of Carbon and Pollution Emissions from China’s Iron and Steel Industry 被引量:1
16
作者 Quanyin Tan Fei Liu Jinhui Li 《Engineering》 SCIE EI CAS CSCD 2024年第9期111-121,共11页
Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions... Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future. 展开更多
关键词 Iron and steel industry Carbon and pollution emissions Synergistic reduction Technological structure steel scrap Cross-elasticity
下载PDF
Stress-assisted corrosion mechanism of 3Ni steel by using gradient boosting decision tree machining learning method 被引量:2
17
作者 Xiaojia Yang Jinghuan Jia +5 位作者 Qing Li Renzheng Zhu Jike Yang Zhiyong Liu Xuequn Cheng Xiaogang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1311-1321,共11页
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st... Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection. 展开更多
关键词 weathering steel stress-assisted corrosion gradient boosting decision tree machining learning
下载PDF
Stress Analysis of New Type Pre-Stressed Anchor Bearing Plate Combining Stamping with Welding Forming and Its Anchorage Zone
18
作者 Daosen Chen Nianchun Deng +1 位作者 Zanzhi Wang Haining Zuo 《World Journal of Engineering and Technology》 2017年第4期33-41,共9页
An anchor bearing plate transfers the anchoring force from anchor plate to the concrete and the pre-stress is formed in the concrete structure. Currently, the main type of anchor bearing plate is cast iron. It is brit... An anchor bearing plate transfers the anchoring force from anchor plate to the concrete and the pre-stress is formed in the concrete structure. Currently, the main type of anchor bearing plate is cast iron. It is brittle during transportation and tension process. This paper presents a new type of anchor bearing plate combined stamping with welding forming. The structure of the new type anchor bearing plate is introduced. The stress states of the anchor bearing plate and anchorage zone under work are studied. Various specifications of anchor bearing plate are studied by ANSYS finite element analysis software following the AASHTO specification. The analysis results are compared with the results of the same type of OVM round-shaped anchor plate. The study results show that the new pre-stressed anchor plates combined stamping with welding forming are feasible and more sturdy which can meet the engineering demand. 展开更多
关键词 pre-stressed Concrete Structure Finite Element Analysis ANCHOR BEARING Plate Stress of ANCHORAGE Zone
下载PDF
Interfacial reaction between AZ91D magnesium alloy melt and mild steel under high temperature 被引量:1
19
作者 Jia-hong Dai Jian-yue Zhang +5 位作者 Bin Jiang Xiang-jun Xu Zhong-tao Jiang Hong-mei Xie Qing-shan Yang Guo-qing Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第2期159-167,共9页
The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and... The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and interfacial interaction during melting process.Therefore,a systematic study about impurities diffusion and interfacial interaction between molten Mg and steel is necessary.In the present study,the interfacial reaction between molten AZ91D Mg alloy and mild steel during melting process was investigated with the melting temperatures of 700℃,750℃ and 800℃.The results show that Al(Fe,Mn)intermetallic layer is the intermetallic primarily formed at the interfaces of AZ91D melt and mild steel.Meanwhile,Al_(8)(Mn,Fe)5is indexed between Al(Fe,Mn)and AZ91D.AlFe_(3)C appears between the mild steel and Al(Fe,Mn)at 700℃ and 750℃,but absent at 800℃ due to the increased solubility of carbon in Mg matrix.It is found that the growth of the intermetallic layer is controlled by diffusion mechanism,and Al and Mn are the dominant diffusing species in the whole interfacial reaction process.By measuring the thickness of different layers,the growth constant was calculated.It increases from 1.89(±0.03)×10^(-12)m^(2)·s^(-1)at 700℃ to 3.05(±0.05)×10^(-12)m^(2)·s^(-1)at 750℃,and 5.18(±0.05)×10^(-12)m^(2)·s^(-1)at 800℃.Meanwhile,the content of Fe is linearly increased in AZ91D with the increase of holding time at 700℃ and 750℃,while it shows a significantly increment after holding for 8 h at 800℃,indicating holding temperature is more crucial to determine the Fe content of AZ91D than holding time. 展开更多
关键词 AZ91D mild steel interface reaction intermetallic growth KINETICS
下载PDF
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation 被引量:1
20
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部