The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a ...The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a semi-submersible floating wind turbine(SFWT)were conducted.Simulations were performed by employing the Morison equation(ME)with linear or second-order wave kinematics and potential flow theory(PFT)with first-or second-order wave forces.A comparison of regular waves,irregular waves,and coupled wind/waves analyses with the experimental data showed that many of the simulation results and experimental data are relatively consistent.However,notable discrepancies are found in the response amplitude operators for platform heave,tower base bending moment,and tension in mooring lines.PFT models give more satisfactory results of heave but more significant discrepan-cies in tower base bending moment than the ME models.In irregular wave analyses,low-frequency resonances were captured by PFT models with second-order difference-frequency terms,and high-frequency resonances were captured by the ME models or PFT models with second-order sum-frequency terms.These force models capture the response frequencies but do not reasonably predict the response amplitudes.The coupled wind/waves analyses showed more satisfactory results than the wave-only analyses.However,an important detail to note is that this satisfactory result is based on the overprediction of wind-induced responses.展开更多
Adhesion of oil at rock surface plays an important role in the liberation of oil from micro-/nano-pores,especially for heavy oil that has extremely high viscosity.Although molecular dynamics simulation is widely used ...Adhesion of oil at rock surface plays an important role in the liberation of oil from micro-/nano-pores,especially for heavy oil that has extremely high viscosity.Although molecular dynamics simulation is widely used to study the interfacial interaction for some specific oil-water-rock systems,experimental measurements provide more realistic and reliable evidence.In this work,we propose a dynamic wettability characterization method to indirectly measure resistant forces at oil-surfactant-rock interfaces,including frictional force,wettability hysteresis force,and viscous force,which are parallel with the oil-solid interface.The adhesive force,which is normal to the oil-solid interface is calculated through measurement of work of adhesion.The results show that work of adhesion instead of contact angle can better describe the adhesion of oil at solid surface.The effect of surfactant concentration on work of adhesion is different for water-wet and oil-wet surfaces.Moreover,average viscous forces are calculated through force analysis on oil drops moving along solid surface in different surfactant environments.It is found that viscous force has a magnitude comparable to the frictional force during the movement,while the wettability hysteresis force is negligible.On the other hand,the adhesive force calculated from the work of adhesion is also comparable to the viscous force.Therefore,both the resistant forces parallel with and normal to the oil-solid interface should be minimized for the liberation of oil from rock surface.This work proposes a simple method to evaluate the wetting capability of different surfactants and measure the adhesive force between heavy oil and rock surfaces indirectly,which provides insight into the adhesion of heavy oil at rock surface and would be valuable for the development of surfactant-based oil recovery methods.展开更多
To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different ...To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition.展开更多
Levitated optomechanical systems represent an excellent candidate platform for force and acceleration sensing.We propose a force-sensing protocol utilizing an optically levitated nanoparticle array.In our scheme,N nan...Levitated optomechanical systems represent an excellent candidate platform for force and acceleration sensing.We propose a force-sensing protocol utilizing an optically levitated nanoparticle array.In our scheme,N nanoparticles are trapped in an optical cavity using holographic optical tweezers.An external laser drives the cavity,exciting N cavity modes interacting simultaneously with the N nanoparticles.The optomechanical interaction encodes the information of the force acting on each nanoparticle onto the intracavity photons,which can be detected directly at the output ports of the cavity.Consequently,our protocol enables real-time imaging of a force field.展开更多
The migration of healthcare professionals,including nurses,is a global phenomenon.It is driven by various factors,including the pursuit of better opportunities,living conditions,and professional development,as well as...The migration of healthcare professionals,including nurses,is a global phenomenon.It is driven by various factors,including the pursuit of better opportunities,living conditions,and professional development,as well as political instability or conflict in their home countries.The World Health Organization(WHO)has noted that high-income countries often rely on foreign-trained nurses to fill gaps in their healthcare systems[1].For instance,as of 2021,over 40%(52 million)of all nurses in the United States(US)were expatriates[2].In the United Kingdom(UK),the percentage of expatriate nurses was even higher,reaching approximately 18%in 2021[3].Owing to globalization and migration,healthcare providers must possess cultural competence to deliver improved care[4,5].Culturally responsive teaching(CRT)is rooted in the idea that culture plays a vital role in shaping people’s behaviors,beliefs,values,and communication styles[6].Furthermore,these cultural factors influence patients’perspectives on health,illness,healing,and their preferences for care and communication[7].By recognizing and embracing these cultural differences,nurses can provide more effective and compassionate care to their diverse patient population[8].展开更多
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ...Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.展开更多
A model with three-layer structure is introduced to explore the acoustic radiation force(ARF)on composite particles with an elastic thin shell.Combing acoustic scattering of cylinder and the thin-shell theorem,the ARF...A model with three-layer structure is introduced to explore the acoustic radiation force(ARF)on composite particles with an elastic thin shell.Combing acoustic scattering of cylinder and the thin-shell theorem,the ARF expression was derived,and the longitudinal and transverse components of the force and axial torque for an eccentric liquid-filled composite particle was obtained.It was found that many factors,such as medium properties,acoustic parameters,eccentricity,and radius ratio of the inner liquid column,affect the acoustic scattering field of the particle,which in turn changes the forces and torque.The acoustic response varies with the particle structures,so the resonance peaks of the force function and torque shift with the eccentricity and radii ratio of particle.The acoustic response of the particle is enhanced and exhibits higher force values due to the presence of the elastic thin shell and the coupling effect with the eccentricity of the internal liquid column.The decrease of the inner liquid density may suppress the high-order resonance peaks,and internal fluid column has less effects on the change in force on composite particle at ka>3,while limited differences exist at ka<3.The axial torque on particles due to geometric asymmetry is closely related to ka and the eccentricity.The distribution of positive and negative force and torque along the axis ka exhibits that composite particle can be manipulated or separated by ultrasound.Our theoretical analysis can provide support for the acoustic manipulation,sorting,and targeting of inhomogeneous particles.展开更多
High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can ...High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles.展开更多
In order to study the problems of unreasonable airflow distribution and serious dust pollution in a heading surface,an experimental platform for forced ventilation and dust removal was built based on the similar princ...In order to study the problems of unreasonable airflow distribution and serious dust pollution in a heading surface,an experimental platform for forced ventilation and dust removal was built based on the similar principles.Through the similar experiment and numerical simulation,the distribution of airflow field in the roadway and the spatial and temporal evolution of dust pollution under the conditions of forced ventilation were determined.The airflow field in the roadway can be divided into three zones:jet zone,vortex zone and reflux zone.The dust concentration gradually decreases from the head to the rear of the roadway.Under the forced ventilation conditions,there is a unilateral accumulation of dust,with higher dust concentrations away from the ducts.The position of the equipment has an interception effect on the dust.The maximum error between the test value and the simulation result is 12.9%,which verifies the accuracy of the experimental results.The research results can provide theoretical guidance for the application of dust removal technology in coal mine.展开更多
This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows t...This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force,thereby achieving dimensionality reduction.The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain.Firstly,the algorithm establishes a recursion scheme based on convolution integral,enabling it to identify loads with a long history and rapidly changing forms over time.Secondly,the algorithm introduces moving mean and polynomial fitting to detrend,enhancing its applicability in load estimation.The aforementioned methodology successfully accomplishes the reconstruction of distributed,instead of centralized,dynamic loads on the continuum in the time domain by utilizing acceleration response.To validate the effectiveness of the method,computational and experimental verification were conducted.展开更多
Introduction: Post-traumatic stress disorder (PTSD) is defined as “actual exposure to death or the threat of death, serious injury or sexual violence”, either directly or indirectly, resulting in a symptomatic proce...Introduction: Post-traumatic stress disorder (PTSD) is defined as “actual exposure to death or the threat of death, serious injury or sexual violence”, either directly or indirectly, resulting in a symptomatic procession of repetition, avoidance, neurovegetative hyperactivity and individualized symptoms, with or without negative cognitive and mood changes. It therefore goes without saying that the defence and security forces constitute a high-risk population in need of attention. Objective: To study post-traumatic stress disorder in defence and security forces in the city of Parakou in 2023. Methods: Descriptive cross-sectional study conducted from December 2022 to July 2023. The study population consisted of active military, republican police and firefighters in the city of Parakou in 2023. Non-proportional stratified sampling was used, given the inaccessibility of the source population size for national security reasons. Post-traumatic stress disorder was assessed using the “post-traumatic stress disorder checklist-5 (PCLS-5) scale. Results: A total of 305 subjects participated in the survey. Males dominated 90.2%. The most represented corps was the Republican Police (41.6%), most of whom were non-commissioned officers (46.6%). The majority count between 11 and 20 years of service (48.9%), with 2 to 5 missions completed (67.5%). The calculated prevalence of post-traumatic stress disorder was 11.8%, based on the post-traumatic stress disorder checklist-5 (PCL-5). Of the 36 respondents with post-traumatic stress disorder, 20 (55.6%) had experienced an armed attack, 25 (69.4%) had witnessed a violent death, 18 (50.0%) had witnessed the agony of a colleague, 15 (41.7%) had been exposed to a fire or explosion, while 26 (72.2%) had been traumatized by physical and/or verbal aggression. 5 (13.9%) had consulted a specialist psychiatrist, while 6 (16.7%) were on medication and 26 (72.2%) used sport as a means of maintaining physical and mental health. Respectively 22 (61.1%) and 21 (58.3%) had definite symptoms of anxiety and depression. Multivariate analysis revealed a significant association between post-traumatic stress disorder and the following variables: total number of children ≤ 2 (p = 0.015), comorbidities such as arterial hypertension (p = 0.007), history of hepatitis (p = 0.017), work accidents (p = 0.016), alcohol dependence (p = 0.004), domestic violence (p = 0.004), psychological violence (p = 0.017) and anxiety disorders (p Conclusion: Defence and security personnel can also be prey to post-traumatic stress disorder (PTSD), which needs to be systematically taken into account when they are subjected to trauma in the course of their duties. Mental health should be an integral part of the periodic medical check-up objectives for defence and security forces throughout the country.展开更多
An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the ped...An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the pedestrians,which may further alter their behavioral patterns.This effect is especially significant in narrow spaces,such as corridors and alleys.This study aims to integrate a non-spreading hazard source into the social force model following the results from a previous experiment and simulation,and to simulate unidirectional pedestrian flows over various crowd densities and clarity–intensity properties of the hazard source.The integration include a virtual repulsion force from the hazard source and a decay on the social force term.The simulations reveal(i)that the hazard source creates virtual bottlenecks that suppress the flow,(ii)that the inter-pedestrian push forms a stabilisation phase on the flow-density curve within medium-to-high densities,and(iii)that the pedestrians are prone to a less orderly and stable pattern of movement in low clarity–intensity scenarios,possibly with lateral collisions passing the hazard source.展开更多
Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has...Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has become a research hotspot. In this paper, a scheme of realizing negative ARF based on the multiple-layered spherical structure design is proposed. The specific structure and design idea are presented. Detailed theoretical calculation analysis is carried out.Numerical simulations have been performed to verify the correctness of this prediction. The conjecture that the suppression of backscattering can achieve negative ARF is verified concretely, which greatly expands the application prospect and design ideas of the ARF. This work has laid a theoretical foundation for realizing precise control of the structure.展开更多
Accurate wheel-rail force data serves as the cornerstone for analyzing the wheel-rail relationship.However,achieving continuous and precise measurement of this force remains a significant challenge in the field.This a...Accurate wheel-rail force data serves as the cornerstone for analyzing the wheel-rail relationship.However,achieving continuous and precise measurement of this force remains a significant challenge in the field.This article introduces a calibration algorithm for the wheel-rail force that leverages graph neural networks and long short-term memory networks.Initially,a comprehensive wheel-rail force detection system for trains was constructed,encompassing two key components:an instrumented wheelset and a ground wheel-rail force measuring system.Subsequently,utilizing this system,two distinct datasets were acquired from the track inspection vehicle:instrumented wheelset data and ground wheel-rail force data,a feedforward neural network was employed to calibrate the instrumented wheelset data,referencing the ground wheel-rail force data.Furthermore,ground wheel-rail force data for the locomotive was obtained for the corresponding road section.This data was then integrated with the calibrated instrumented wheelset data from the track inspection vehicle.Leveraging the GNN-LSTM network,the article establishes a mapping relationship model between the wheel-rail force of the track inspection vehicle and the locomotive wheel-rail force.This model facilitates continuous measurement of locomotive wheel-rail forces across three typical scenarios:straight sections,long and steep downhill sections,and small curve radius sections.展开更多
The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the...The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the inertia and damping effects of the structures are not involved causing an overestimation on the boulder impact force.In order to address this issue,a dynamic-based model for calculating the boulder impact force of a debris flow was proposed in this study,and the dynamic characteristics of a cantilever beam with multiple degrees of freedom under boulder collision were investigated.By using the drop-weight method to simulate boulders within debris flow,seven experiments of drop-weight impacting the cantilever beam were used to calibrate the error of the dynamicbased model.Results indicate that the dynamic-based model is able to reconstruct the impact force history on the cantilever beam during impact time and the error of dynamic-based model is 15.3%in calculating boulder impact force,significantly outperforming the cantilever beam model’s error of 285%.Therefore,the dynamic-based model can overcome the drawbacks of the static-based models and provide a more reliable theoretical foundation for the engineering design of debris flow control structures.展开更多
Proton exchange membrane fuel cell(PEMFC)is of paramount significance to the development of clean energy.The components of PEMFC are assembled using many pairs of nuts and bolts.The assembly champing bolt torque is cr...Proton exchange membrane fuel cell(PEMFC)is of paramount significance to the development of clean energy.The components of PEMFC are assembled using many pairs of nuts and bolts.The assembly champing bolt torque is critical to the electrochemical performance and mechanical stability of PEMFC.In this paper,a PEMFC with the threechannel serpentine flow field was used and studied.The different assembly clamping bolt torques were applied to the PEMFC in three uniform assembly bolt torque and six non-uniform assembly bolt torque conditions,respectively.And then,the electrochemical performance experiments were performed to study the effect of the assembly bolt torque on the electrochemical performance.The test results show that the assembly bolt torque significantly affected the electrochemical performance of the PEMFC.In uniform assembly bolt torque conditions,the maximal power density increased initially as the assembly bolt torque increased,and then decreased on further increasing the assembly torque.It existed the optimum assembly torque which was found to be 3.0 N·m in this work.In non-uniform assembly clamping bolt torque conditions,the optimum electrochemical performance appeared in the condition where the assembly torque of each bolt was closer to be 3.0 N·m.This could be due to the change of the contact resistance between the gas diffusion layer and bipolar plate and mass transport resistance for the hydrogen and oxygen towards the catalyst layers.This work could optimize the assembly force conditions and provide useful information for the practical PEMFC stack assembly.展开更多
Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery fa...Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery failure under various preload forces.The time-sequence relationship among expansion force,voltage,and temperature during thermal abuse under five categorised stages is revealed.Three characteristic peaks are identified for the expansion force,which correspond to venting,internal short-circuiting,and thermal runaway.In particular,an abnormal expansion force signal can be detected at temperatures as low as 42.4°C,followed by battery thermal runaway in approximately 6.5 min.Moreover,reducing the preload force can improve the effectiveness of the early-warning method via the expansion force.Specifically,reducing the preload force from 6000 to 1000 N prolongs the warning time(i.e.,227 to 398 s)before thermal runaway is triggered.Based on the results,a notable expansion force early-warning method is proposed that can successfully enable early safety warning approximately 375 s ahead of battery thermal runaway and effectively prevent failure propagation with module validation.This study provides a practical reference for the development of timely and accurate early-warning strategies as well as guidance for the design of safer battery systems.展开更多
The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a not...The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a notable influence on rock deformation and failure,its effect on hydraulic fracture(HF)propagation remains ambiguous.Therefore,in this study,we improved a traditional fluid–solid coupling method by incorporating the role of seepage force during the fracturing fluid seepage,using the discrete element method.First,we validated the simulation results of the improved method by comparing them with an analytical solution of the seepage force and published experimental results.Next,we conducted numerical simulations in both homogeneous and heterogeneous sandstone formations to investigate the influence of seepage force on HF propagation.Our results indicate that fluid viscosity has a greater impact on the magnitude and extent of seepage force compared to injection rate,and that lower viscosity and injection rate correspond to shorter hydraulic fracture lengths.Furthermore,seepage force influences the direction of HF propagation,causing HFs to deflect towards the side of the reservoir with weaker cementation and higher permeability.展开更多
The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential...The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential confocal(LDC)–atomic force probe(AFP)method to measure the inner and outer 3D surface profiles of laser fusion targets at a high resolution.This method utilizes the LDC method to detect the deflection of the AFP and exploits the high spatial resolution of the AFP to enhance the spatial resolution of the outer profile measurement.Nondestructive and co-reference measurements of the inner profile of a target were achieved using the tomographic characteristics of the LDC method.Furthermore,by combining multiple repositionings of the target using a horizontal slewing shaft,the inner and outer 3D surface profiles of the target were obtained,along with a power spectrum assessment of the entire surface.The experimental results revealed that the respective axial and lateral resolutions of the outer profile measurement were 0.5 and 1.3 nm,while the respective axial and lateral resolutions of the inner profile measurement were 2.0 nm and approximately 400.0 nm.The repeatabilities of the rootmean-square deviation measurements for the outer and inner profiles of the target were 2.6 and 2.4 nm,respectively.We believe our study provides a promising method for the high-resolution and nondestructive co-reference measurement of the inner and outer 3D profiles of laser fusion targets.展开更多
基金funded by the National Natural Science Foundation of China(No.51809135)the Shandong Provincial Natural Science Foundation(No.ZR2018BEE 047)+1 种基金the National Natural Science Foundation of China–Shandong Joint Fund(No.U2006229)the SKL of HESS(No.HESS-1808).
文摘The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a semi-submersible floating wind turbine(SFWT)were conducted.Simulations were performed by employing the Morison equation(ME)with linear or second-order wave kinematics and potential flow theory(PFT)with first-or second-order wave forces.A comparison of regular waves,irregular waves,and coupled wind/waves analyses with the experimental data showed that many of the simulation results and experimental data are relatively consistent.However,notable discrepancies are found in the response amplitude operators for platform heave,tower base bending moment,and tension in mooring lines.PFT models give more satisfactory results of heave but more significant discrepan-cies in tower base bending moment than the ME models.In irregular wave analyses,low-frequency resonances were captured by PFT models with second-order difference-frequency terms,and high-frequency resonances were captured by the ME models or PFT models with second-order sum-frequency terms.These force models capture the response frequencies but do not reasonably predict the response amplitudes.The coupled wind/waves analyses showed more satisfactory results than the wave-only analyses.However,an important detail to note is that this satisfactory result is based on the overprediction of wind-induced responses.
基金funded by the National Key R&D Program of China(No.2018YFA0702400).
文摘Adhesion of oil at rock surface plays an important role in the liberation of oil from micro-/nano-pores,especially for heavy oil that has extremely high viscosity.Although molecular dynamics simulation is widely used to study the interfacial interaction for some specific oil-water-rock systems,experimental measurements provide more realistic and reliable evidence.In this work,we propose a dynamic wettability characterization method to indirectly measure resistant forces at oil-surfactant-rock interfaces,including frictional force,wettability hysteresis force,and viscous force,which are parallel with the oil-solid interface.The adhesive force,which is normal to the oil-solid interface is calculated through measurement of work of adhesion.The results show that work of adhesion instead of contact angle can better describe the adhesion of oil at solid surface.The effect of surfactant concentration on work of adhesion is different for water-wet and oil-wet surfaces.Moreover,average viscous forces are calculated through force analysis on oil drops moving along solid surface in different surfactant environments.It is found that viscous force has a magnitude comparable to the frictional force during the movement,while the wettability hysteresis force is negligible.On the other hand,the adhesive force calculated from the work of adhesion is also comparable to the viscous force.Therefore,both the resistant forces parallel with and normal to the oil-solid interface should be minimized for the liberation of oil from rock surface.This work proposes a simple method to evaluate the wetting capability of different surfactants and measure the adhesive force between heavy oil and rock surfaces indirectly,which provides insight into the adhesion of heavy oil at rock surface and would be valuable for the development of surfactant-based oil recovery methods.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2800700)the National Natural Science Foundation of China(Grant Nos.52171330,52101379,52101380,51679053)+2 种基金the Project of Research and Development Plan in Key Areas of Guangdong Province(Grant No.2020B1111010002)the Foundation of Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resources(Grant No.MESTA-2021-B010)the Natural Science Foundation of Guangdong Province,China(Grant No.2021A1515012134)。
文摘To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition.
基金the useful discussion.This work is supported by the Natural Science Foundation of Zhe-jiang Province(Grant No.LQ22A040010)the National Natural Science Foundation of China(Grant Nos.12304545 and 12204434).
文摘Levitated optomechanical systems represent an excellent candidate platform for force and acceleration sensing.We propose a force-sensing protocol utilizing an optically levitated nanoparticle array.In our scheme,N nanoparticles are trapped in an optical cavity using holographic optical tweezers.An external laser drives the cavity,exciting N cavity modes interacting simultaneously with the N nanoparticles.The optomechanical interaction encodes the information of the force acting on each nanoparticle onto the intracavity photons,which can be detected directly at the output ports of the cavity.Consequently,our protocol enables real-time imaging of a force field.
文摘The migration of healthcare professionals,including nurses,is a global phenomenon.It is driven by various factors,including the pursuit of better opportunities,living conditions,and professional development,as well as political instability or conflict in their home countries.The World Health Organization(WHO)has noted that high-income countries often rely on foreign-trained nurses to fill gaps in their healthcare systems[1].For instance,as of 2021,over 40%(52 million)of all nurses in the United States(US)were expatriates[2].In the United Kingdom(UK),the percentage of expatriate nurses was even higher,reaching approximately 18%in 2021[3].Owing to globalization and migration,healthcare providers must possess cultural competence to deliver improved care[4,5].Culturally responsive teaching(CRT)is rooted in the idea that culture plays a vital role in shaping people’s behaviors,beliefs,values,and communication styles[6].Furthermore,these cultural factors influence patients’perspectives on health,illness,healing,and their preferences for care and communication[7].By recognizing and embracing these cultural differences,nurses can provide more effective and compassionate care to their diverse patient population[8].
基金financially supported by the National Key Research and Development Program of China (2021YFB3600403)the Fundamental Research Funds for the Central Universities (000-0903069032)。
文摘Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.
基金the National Natural Science Foundation of China(Grant Nos.12374441 and 11974232)the Fund from Yulin Science and Technology Bureau(Grant No.CXY-2022-178).
文摘A model with three-layer structure is introduced to explore the acoustic radiation force(ARF)on composite particles with an elastic thin shell.Combing acoustic scattering of cylinder and the thin-shell theorem,the ARF expression was derived,and the longitudinal and transverse components of the force and axial torque for an eccentric liquid-filled composite particle was obtained.It was found that many factors,such as medium properties,acoustic parameters,eccentricity,and radius ratio of the inner liquid column,affect the acoustic scattering field of the particle,which in turn changes the forces and torque.The acoustic response varies with the particle structures,so the resonance peaks of the force function and torque shift with the eccentricity and radii ratio of particle.The acoustic response of the particle is enhanced and exhibits higher force values due to the presence of the elastic thin shell and the coupling effect with the eccentricity of the internal liquid column.The decrease of the inner liquid density may suppress the high-order resonance peaks,and internal fluid column has less effects on the change in force on composite particle at ka>3,while limited differences exist at ka<3.The axial torque on particles due to geometric asymmetry is closely related to ka and the eccentricity.The distribution of positive and negative force and torque along the axis ka exhibits that composite particle can be manipulated or separated by ultrasound.Our theoretical analysis can provide support for the acoustic manipulation,sorting,and targeting of inhomogeneous particles.
基金Project supported by the National Natural Science Foundation of China (Grant No.12064034)the Leading Talents Program of Science and Technology Innovation in Ningxia Hui Autonomous Region,China (Grant No.2020GKLRLX08)+2 种基金the Natural Science Foundation of Ningxia Hui Auatonomous Region,China (Grant Nos.2022AAC03643,2022AAC03117,and 2018AAC03029)the Major Science and Technology Project of Ningxia Hui Autonomous Region,China (Grant No.2022BDE03006)the Natural Science Project of the Higher Education Institutions of Ningxia Hui Autonomous Region,China (Grant No.13-1069)。
文摘High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles.
基金National Key R&D Program of China(2022YFC2503200,2022YFC2503201)National Natural Science Foundation of China(52074012,52204191)+5 种基金Anhui Provincial Natural Science Foundation(2308085J19)University Distinguished Youth Foundation of Anhui Province(2022AH020057)Anhui Province University Discipline(Major)Top Talent Academic Support Project(gxbjZD2022017)Funding for academic research activities of reserve candidates for academic and technological leaders in Anhui Province(2022H301)Independent Research fund of Key Laboratory of Industrial Dust Prevention and Control&Occupational Health and Safety,Ministry of Education(Anhui University of Science and Technology)(EK20211004)Graduate Innovation Fund of Anhui University of Science and Technology(2023CX1003).
文摘In order to study the problems of unreasonable airflow distribution and serious dust pollution in a heading surface,an experimental platform for forced ventilation and dust removal was built based on the similar principles.Through the similar experiment and numerical simulation,the distribution of airflow field in the roadway and the spatial and temporal evolution of dust pollution under the conditions of forced ventilation were determined.The airflow field in the roadway can be divided into three zones:jet zone,vortex zone and reflux zone.The dust concentration gradually decreases from the head to the rear of the roadway.Under the forced ventilation conditions,there is a unilateral accumulation of dust,with higher dust concentrations away from the ducts.The position of the equipment has an interception effect on the dust.The maximum error between the test value and the simulation result is 12.9%,which verifies the accuracy of the experimental results.The research results can provide theoretical guidance for the application of dust removal technology in coal mine.
文摘This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force,thereby achieving dimensionality reduction.The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain.Firstly,the algorithm establishes a recursion scheme based on convolution integral,enabling it to identify loads with a long history and rapidly changing forms over time.Secondly,the algorithm introduces moving mean and polynomial fitting to detrend,enhancing its applicability in load estimation.The aforementioned methodology successfully accomplishes the reconstruction of distributed,instead of centralized,dynamic loads on the continuum in the time domain by utilizing acceleration response.To validate the effectiveness of the method,computational and experimental verification were conducted.
文摘Introduction: Post-traumatic stress disorder (PTSD) is defined as “actual exposure to death or the threat of death, serious injury or sexual violence”, either directly or indirectly, resulting in a symptomatic procession of repetition, avoidance, neurovegetative hyperactivity and individualized symptoms, with or without negative cognitive and mood changes. It therefore goes without saying that the defence and security forces constitute a high-risk population in need of attention. Objective: To study post-traumatic stress disorder in defence and security forces in the city of Parakou in 2023. Methods: Descriptive cross-sectional study conducted from December 2022 to July 2023. The study population consisted of active military, republican police and firefighters in the city of Parakou in 2023. Non-proportional stratified sampling was used, given the inaccessibility of the source population size for national security reasons. Post-traumatic stress disorder was assessed using the “post-traumatic stress disorder checklist-5 (PCLS-5) scale. Results: A total of 305 subjects participated in the survey. Males dominated 90.2%. The most represented corps was the Republican Police (41.6%), most of whom were non-commissioned officers (46.6%). The majority count between 11 and 20 years of service (48.9%), with 2 to 5 missions completed (67.5%). The calculated prevalence of post-traumatic stress disorder was 11.8%, based on the post-traumatic stress disorder checklist-5 (PCL-5). Of the 36 respondents with post-traumatic stress disorder, 20 (55.6%) had experienced an armed attack, 25 (69.4%) had witnessed a violent death, 18 (50.0%) had witnessed the agony of a colleague, 15 (41.7%) had been exposed to a fire or explosion, while 26 (72.2%) had been traumatized by physical and/or verbal aggression. 5 (13.9%) had consulted a specialist psychiatrist, while 6 (16.7%) were on medication and 26 (72.2%) used sport as a means of maintaining physical and mental health. Respectively 22 (61.1%) and 21 (58.3%) had definite symptoms of anxiety and depression. Multivariate analysis revealed a significant association between post-traumatic stress disorder and the following variables: total number of children ≤ 2 (p = 0.015), comorbidities such as arterial hypertension (p = 0.007), history of hepatitis (p = 0.017), work accidents (p = 0.016), alcohol dependence (p = 0.004), domestic violence (p = 0.004), psychological violence (p = 0.017) and anxiety disorders (p Conclusion: Defence and security personnel can also be prey to post-traumatic stress disorder (PTSD), which needs to be systematically taken into account when they are subjected to trauma in the course of their duties. Mental health should be an integral part of the periodic medical check-up objectives for defence and security forces throughout the country.
基金Project supported by National Key Research and Development Program of China(Grant Nos.2022YFC3320800 and 2021YFC1523500)the National Natural Science Foundation of China(Grant Nos.71971126,71673163,72304165,72204136,and 72104123).
文摘An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the pedestrians,which may further alter their behavioral patterns.This effect is especially significant in narrow spaces,such as corridors and alleys.This study aims to integrate a non-spreading hazard source into the social force model following the results from a previous experiment and simulation,and to simulate unidirectional pedestrian flows over various crowd densities and clarity–intensity properties of the hazard source.The integration include a virtual repulsion force from the hazard source and a decay on the social force term.The simulations reveal(i)that the hazard source creates virtual bottlenecks that suppress the flow,(ii)that the inter-pedestrian push forms a stabilisation phase on the flow-density curve within medium-to-high densities,and(iii)that the pedestrians are prone to a less orderly and stable pattern of movement in low clarity–intensity scenarios,possibly with lateral collisions passing the hazard source.
基金Project supported by the National Key Research and Development Program of China (Grant No.2020YFA0211400)the State Key Program of the National Natural Science Foundation of China (Grant No.11834008)+3 种基金the National Natural Science Foundation of China (Grant Nos.12174192 and 12204119)the Fund from the State Key Laboratory of Acoustics,Chinese Academy of Sciences (Grant No.SKLA202210)the Fund from the Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences (Grant No.SSHJ-KFKT-1701)the Science and Technology Foundation of Guizhou Province,China (Grant No.ZK[2023]249)。
文摘Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has become a research hotspot. In this paper, a scheme of realizing negative ARF based on the multiple-layered spherical structure design is proposed. The specific structure and design idea are presented. Detailed theoretical calculation analysis is carried out.Numerical simulations have been performed to verify the correctness of this prediction. The conjecture that the suppression of backscattering can achieve negative ARF is verified concretely, which greatly expands the application prospect and design ideas of the ARF. This work has laid a theoretical foundation for realizing precise control of the structure.
基金supported by the National Key R&D Program of China(Grant No.2021YFF0501101)the National Natural Science Foundation of China(Grant Nos.62173137,62303178)the Project of Hunan Provincial Department of Education of China(Grant Nos.23A0426,22B0577).
文摘Accurate wheel-rail force data serves as the cornerstone for analyzing the wheel-rail relationship.However,achieving continuous and precise measurement of this force remains a significant challenge in the field.This article introduces a calibration algorithm for the wheel-rail force that leverages graph neural networks and long short-term memory networks.Initially,a comprehensive wheel-rail force detection system for trains was constructed,encompassing two key components:an instrumented wheelset and a ground wheel-rail force measuring system.Subsequently,utilizing this system,two distinct datasets were acquired from the track inspection vehicle:instrumented wheelset data and ground wheel-rail force data,a feedforward neural network was employed to calibrate the instrumented wheelset data,referencing the ground wheel-rail force data.Furthermore,ground wheel-rail force data for the locomotive was obtained for the corresponding road section.This data was then integrated with the calibrated instrumented wheelset data from the track inspection vehicle.Leveraging the GNN-LSTM network,the article establishes a mapping relationship model between the wheel-rail force of the track inspection vehicle and the locomotive wheel-rail force.This model facilitates continuous measurement of locomotive wheel-rail forces across three typical scenarios:straight sections,long and steep downhill sections,and small curve radius sections.
基金supported by the National Natural Science Foundation of China(U2244227)National Key R&D Program of China(2023YFC3007205)National Natural Science Foundation of China(No.42271013).
文摘The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the inertia and damping effects of the structures are not involved causing an overestimation on the boulder impact force.In order to address this issue,a dynamic-based model for calculating the boulder impact force of a debris flow was proposed in this study,and the dynamic characteristics of a cantilever beam with multiple degrees of freedom under boulder collision were investigated.By using the drop-weight method to simulate boulders within debris flow,seven experiments of drop-weight impacting the cantilever beam were used to calibrate the error of the dynamicbased model.Results indicate that the dynamic-based model is able to reconstruct the impact force history on the cantilever beam during impact time and the error of dynamic-based model is 15.3%in calculating boulder impact force,significantly outperforming the cantilever beam model’s error of 285%.Therefore,the dynamic-based model can overcome the drawbacks of the static-based models and provide a more reliable theoretical foundation for the engineering design of debris flow control structures.
基金Supported by National Natural Science Foundation of China (Grant No.52275152)。
文摘Proton exchange membrane fuel cell(PEMFC)is of paramount significance to the development of clean energy.The components of PEMFC are assembled using many pairs of nuts and bolts.The assembly champing bolt torque is critical to the electrochemical performance and mechanical stability of PEMFC.In this paper,a PEMFC with the threechannel serpentine flow field was used and studied.The different assembly clamping bolt torques were applied to the PEMFC in three uniform assembly bolt torque and six non-uniform assembly bolt torque conditions,respectively.And then,the electrochemical performance experiments were performed to study the effect of the assembly bolt torque on the electrochemical performance.The test results show that the assembly bolt torque significantly affected the electrochemical performance of the PEMFC.In uniform assembly bolt torque conditions,the maximal power density increased initially as the assembly bolt torque increased,and then decreased on further increasing the assembly torque.It existed the optimum assembly torque which was found to be 3.0 N·m in this work.In non-uniform assembly clamping bolt torque conditions,the optimum electrochemical performance appeared in the condition where the assembly torque of each bolt was closer to be 3.0 N·m.This could be due to the change of the contact resistance between the gas diffusion layer and bipolar plate and mass transport resistance for the hydrogen and oxygen towards the catalyst layers.This work could optimize the assembly force conditions and provide useful information for the practical PEMFC stack assembly.
基金supported by the National Key R&D Program of China(2022YFB2404300)the National Natural Science Foundation of China(NSFC Nos.52177217 and 52106244)。
文摘Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery failure under various preload forces.The time-sequence relationship among expansion force,voltage,and temperature during thermal abuse under five categorised stages is revealed.Three characteristic peaks are identified for the expansion force,which correspond to venting,internal short-circuiting,and thermal runaway.In particular,an abnormal expansion force signal can be detected at temperatures as low as 42.4°C,followed by battery thermal runaway in approximately 6.5 min.Moreover,reducing the preload force can improve the effectiveness of the early-warning method via the expansion force.Specifically,reducing the preload force from 6000 to 1000 N prolongs the warning time(i.e.,227 to 398 s)before thermal runaway is triggered.Based on the results,a notable expansion force early-warning method is proposed that can successfully enable early safety warning approximately 375 s ahead of battery thermal runaway and effectively prevent failure propagation with module validation.This study provides a practical reference for the development of timely and accurate early-warning strategies as well as guidance for the design of safer battery systems.
基金National Natural Science Foundation of China(51934005,U23B2089)Shaanxi Provincial Natural Science Basic Research Program Project(2024JC-YBQN-0554).
文摘The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a notable influence on rock deformation and failure,its effect on hydraulic fracture(HF)propagation remains ambiguous.Therefore,in this study,we improved a traditional fluid–solid coupling method by incorporating the role of seepage force during the fracturing fluid seepage,using the discrete element method.First,we validated the simulation results of the improved method by comparing them with an analytical solution of the seepage force and published experimental results.Next,we conducted numerical simulations in both homogeneous and heterogeneous sandstone formations to investigate the influence of seepage force on HF propagation.Our results indicate that fluid viscosity has a greater impact on the magnitude and extent of seepage force compared to injection rate,and that lower viscosity and injection rate correspond to shorter hydraulic fracture lengths.Furthermore,seepage force influences the direction of HF propagation,causing HFs to deflect towards the side of the reservoir with weaker cementation and higher permeability.
基金supported by the National Natural Science Foundation of China(52327806 and U22A6006).
文摘The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential confocal(LDC)–atomic force probe(AFP)method to measure the inner and outer 3D surface profiles of laser fusion targets at a high resolution.This method utilizes the LDC method to detect the deflection of the AFP and exploits the high spatial resolution of the AFP to enhance the spatial resolution of the outer profile measurement.Nondestructive and co-reference measurements of the inner profile of a target were achieved using the tomographic characteristics of the LDC method.Furthermore,by combining multiple repositionings of the target using a horizontal slewing shaft,the inner and outer 3D surface profiles of the target were obtained,along with a power spectrum assessment of the entire surface.The experimental results revealed that the respective axial and lateral resolutions of the outer profile measurement were 0.5 and 1.3 nm,while the respective axial and lateral resolutions of the inner profile measurement were 2.0 nm and approximately 400.0 nm.The repeatabilities of the rootmean-square deviation measurements for the outer and inner profiles of the target were 2.6 and 2.4 nm,respectively.We believe our study provides a promising method for the high-resolution and nondestructive co-reference measurement of the inner and outer 3D profiles of laser fusion targets.