An efficient multi-harmonic method is proposed for studying the effects of mistuning on resonant features of bladed disks with blade-to-blade dry friction damping. This method is able to predict accurately the forced ...An efficient multi-harmonic method is proposed for studying the effects of mistuning on resonant features of bladed disks with blade-to-blade dry friction damping. This method is able to predict accurately the forced response of bladed disks in frequency domain, which is validated by numerical integration method in time domain. The resonant features of both tuned and mistuned systems are investigated by using this method under various system coupling strengths, viscous dampings, and dry friction darnpings, etc. The results demonstrate that the proposed multi-harmonic method is very efficient for studying the mistuning effects on the resonant response of bladed disks with blade-to-blade dry friction damping, especially considering the combined effects of various system parameters.展开更多
Aimed at the difficulty in revealing the vibration localization mechanism of mistuned bladed disks by using simple non-linear model,a mechanical model of the bladed disk with random mistuning of hysteretic dry frictio...Aimed at the difficulty in revealing the vibration localization mechanism of mistuned bladed disks by using simple non-linear model,a mechanical model of the bladed disk with random mistuning of hysteretic dry friction damping was established.Then,the incremental harmonic balance method was used to analyze the effects of the parameters of bladed disks,such as the mistuning strength of dry friction force,coupled strength,viscous damping ratio and friction strength,on the forced response of the bladed disks.The results show that the vibrational energy localization phenomenon turns up in the tuned bladed disks if the nonlinear friction damping exists,and the random mistuning of the dry friction force intensifies this kind of vibration localization.展开更多
This paper presents a comprehensive investigation of aeroelastic stability for a high aft-swept transonic fan blade with low hub-to-tip ratio. The evolution of the blade’s aeroelastic stability in the first bending m...This paper presents a comprehensive investigation of aeroelastic stability for a high aft-swept transonic fan blade with low hub-to-tip ratio. The evolution of the blade’s aeroelastic stability in the first bending modes is studied. A 3D flutter computation representing today’s industry standard is performed. Steady state flow field and motion-induced unsteady pressures acting on the blade have been determined by a 3D Reynolds-Averaged Navier-Stokes (RANS) equations with a standard k-ε turbulence model. A weakly coupled (one-way) method has been employed to describe the interaction between fluid and structure. The results of aerodynamic damping indicate a significant shock-driven risk. To increase the flutter margin by a viable method, a statistical mistuned aeroelastic stability investigation has been performed. It has been found that alternately intentional mistuning with a small blade frequency offset stabilizes the system effectively. However, as the standard deviation of random mistuning reaches some critical values, the introduction of alternately intentional mistuning does not provide any additional stabilizing effects.展开更多
For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading o...For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading of a turbine rotor can appear due to manufacturing tolerances or because of the blading process itself due to unequal mounting of the blades into the disk. This paper investigates the mistuning of the individual blades of a low pressure turbine with respect to the effects mentioned above. Two different rotors with different aerodynamic design of the blades were investigated. The blades were mounted to the disk with a so-called hammer head root which is especially prone to mounting irregularities. For detailed investigations, the rotor was excited with a shaker system to detect the forced response behavior of the individual blades. The measurements were done with a laser vibrometer system. As the excitation of rotor structure was held constant during measurement, it was possible to detect the line of nodes and mode shapes as well. It could be shown that the assembly process has an influence on the mistuning. The data were analyzed and compared with numerical results. For this, different contact models and boundary conditions were used. The above described characterization of modal behavior of the rotor is the basis for the upcoming aeroelastic investigations and especially for the blade vibration measurements of the rotor, turning with design and off-design speeds.展开更多
The large and complex structures are divided into hundreds of thousands or millions degrees of freedom(DOF) when they are calculated which will spend a lot of time and the efficiency will be extremely low. The class...The large and complex structures are divided into hundreds of thousands or millions degrees of freedom(DOF) when they are calculated which will spend a lot of time and the efficiency will be extremely low. The classical component modal synthesis method (CMSM) are used extensively, but for many structures in the engineering of high-rise buildings, aerospace systemic engineerings, marine oil platforms etc, a large amount of calculation is still needed. An improved hybrid interface substructural component modal synthesis method(HISCMSM) is proposed. The parametric model of the mistuned blisk is built by the improved HISCMSM. The double coordinating conditions of the displacement and the force are introduced to ensure the computational accuracy. Compared with the overall structure finite element model method(FEMM), the computational time is shortened by23.86%–31.56%and the modal deviation is 0.002%–0.157% which meets the requirement of the computational accuracy. It is faster 4.46%–10.57% than the classical HISCMSM. So the improved HISCMSM is better than the classical HISCMSM and the overall structure FEMM. Meanwhile, the frequency and the modal shape are researched, considering the factors including rotational speed, gas temperature and geometry size. The strong localization phenomenon of the modal shape’s the maximum displacement and the maximum stress is observed in the second frequency band and it is the most sensitive in the frequency veering. But the localization phenomenon is relatively weak in 1st and the 3d frequency band. The localization of the modal shape is more serious under the condition of the geometric dimensioning mistuned. An improved HISCMSM is proposed, the computational efficiency of the mistuned blisk can be increased observably by this method.展开更多
The finite element models of blade, disk and bladed disk are built up by finite element software ANSYS. The natural frequencies of the single blade, the whole bladed disk and the bladed disk with only one sector by cy...The finite element models of blade, disk and bladed disk are built up by finite element software ANSYS. The natural frequencies of the single blade, the whole bladed disk and the bladed disk with only one sector by cyclic symmetry boundary have been calculated. Then, based on the results above, a structure dynamic model of multiple degree-of-freedom (MDOF) systems is established to simulate the bladed-disk assembly. Solve the motion equation by using the Runge-Kutta Method (Gill Method). The dynamic response of the MDOF system is achieved. As for the given mistuning patterns, the vibration responses of bladed disks are calculated. The results have been compared and analyzed, and the optimum pattern is selected.展开更多
基金National Nature Science Foundation of China (NO.50275121)
文摘An efficient multi-harmonic method is proposed for studying the effects of mistuning on resonant features of bladed disks with blade-to-blade dry friction damping. This method is able to predict accurately the forced response of bladed disks in frequency domain, which is validated by numerical integration method in time domain. The resonant features of both tuned and mistuned systems are investigated by using this method under various system coupling strengths, viscous dampings, and dry friction darnpings, etc. The results demonstrate that the proposed multi-harmonic method is very efficient for studying the mistuning effects on the resonant response of bladed disks with blade-to-blade dry friction damping, especially considering the combined effects of various system parameters.
基金Project(2007CB707706) supported by the National Basic Research Program of China
文摘Aimed at the difficulty in revealing the vibration localization mechanism of mistuned bladed disks by using simple non-linear model,a mechanical model of the bladed disk with random mistuning of hysteretic dry friction damping was established.Then,the incremental harmonic balance method was used to analyze the effects of the parameters of bladed disks,such as the mistuning strength of dry friction force,coupled strength,viscous damping ratio and friction strength,on the forced response of the bladed disks.The results show that the vibrational energy localization phenomenon turns up in the tuned bladed disks if the nonlinear friction damping exists,and the random mistuning of the dry friction force intensifies this kind of vibration localization.
文摘This paper presents a comprehensive investigation of aeroelastic stability for a high aft-swept transonic fan blade with low hub-to-tip ratio. The evolution of the blade’s aeroelastic stability in the first bending modes is studied. A 3D flutter computation representing today’s industry standard is performed. Steady state flow field and motion-induced unsteady pressures acting on the blade have been determined by a 3D Reynolds-Averaged Navier-Stokes (RANS) equations with a standard k-ε turbulence model. A weakly coupled (one-way) method has been employed to describe the interaction between fluid and structure. The results of aerodynamic damping indicate a significant shock-driven risk. To increase the flutter margin by a viable method, a statistical mistuned aeroelastic stability investigation has been performed. It has been found that alternately intentional mistuning with a small blade frequency offset stabilizes the system effectively. However, as the standard deviation of random mistuning reaches some critical values, the introduction of alternately intentional mistuning does not provide any additional stabilizing effects.
文摘For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading of a turbine rotor can appear due to manufacturing tolerances or because of the blading process itself due to unequal mounting of the blades into the disk. This paper investigates the mistuning of the individual blades of a low pressure turbine with respect to the effects mentioned above. Two different rotors with different aerodynamic design of the blades were investigated. The blades were mounted to the disk with a so-called hammer head root which is especially prone to mounting irregularities. For detailed investigations, the rotor was excited with a shaker system to detect the forced response behavior of the individual blades. The measurements were done with a laser vibrometer system. As the excitation of rotor structure was held constant during measurement, it was possible to detect the line of nodes and mode shapes as well. It could be shown that the assembly process has an influence on the mistuning. The data were analyzed and compared with numerical results. For this, different contact models and boundary conditions were used. The above described characterization of modal behavior of the rotor is the basis for the upcoming aeroelastic investigations and especially for the blade vibration measurements of the rotor, turning with design and off-design speeds.
基金Supported by National Natural Science Foundation of China (Grant Nos.51375032,51335003)
文摘The large and complex structures are divided into hundreds of thousands or millions degrees of freedom(DOF) when they are calculated which will spend a lot of time and the efficiency will be extremely low. The classical component modal synthesis method (CMSM) are used extensively, but for many structures in the engineering of high-rise buildings, aerospace systemic engineerings, marine oil platforms etc, a large amount of calculation is still needed. An improved hybrid interface substructural component modal synthesis method(HISCMSM) is proposed. The parametric model of the mistuned blisk is built by the improved HISCMSM. The double coordinating conditions of the displacement and the force are introduced to ensure the computational accuracy. Compared with the overall structure finite element model method(FEMM), the computational time is shortened by23.86%–31.56%and the modal deviation is 0.002%–0.157% which meets the requirement of the computational accuracy. It is faster 4.46%–10.57% than the classical HISCMSM. So the improved HISCMSM is better than the classical HISCMSM and the overall structure FEMM. Meanwhile, the frequency and the modal shape are researched, considering the factors including rotational speed, gas temperature and geometry size. The strong localization phenomenon of the modal shape’s the maximum displacement and the maximum stress is observed in the second frequency band and it is the most sensitive in the frequency veering. But the localization phenomenon is relatively weak in 1st and the 3d frequency band. The localization of the modal shape is more serious under the condition of the geometric dimensioning mistuned. An improved HISCMSM is proposed, the computational efficiency of the mistuned blisk can be increased observably by this method.
文摘The finite element models of blade, disk and bladed disk are built up by finite element software ANSYS. The natural frequencies of the single blade, the whole bladed disk and the bladed disk with only one sector by cyclic symmetry boundary have been calculated. Then, based on the results above, a structure dynamic model of multiple degree-of-freedom (MDOF) systems is established to simulate the bladed-disk assembly. Solve the motion equation by using the Runge-Kutta Method (Gill Method). The dynamic response of the MDOF system is achieved. As for the given mistuning patterns, the vibration responses of bladed disks are calculated. The results have been compared and analyzed, and the optimum pattern is selected.