期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Aspect-Based Sentiment Classification Using Deep Learning and Hybrid of Word Embedding and Contextual Position
1
作者 Waqas Ahmad Hikmat Ullah Khan +3 位作者 Fawaz Khaled Alarfaj Saqib Iqbal Abdullah Mohammad Alomair Naif Almusallam 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期3101-3124,共24页
Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative,positive,or neutral while associating them with their identified aspects from the corresponding context.In this regard,p... Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative,positive,or neutral while associating them with their identified aspects from the corresponding context.In this regard,prior methodologies widely utilize either word embedding or tree-based rep-resentations.Meanwhile,the separate use of those deep features such as word embedding and tree-based dependencies has become a significant cause of information loss.Generally,word embedding preserves the syntactic and semantic relations between a couple of terms lying in a sentence.Besides,the tree-based structure conserves the grammatical and logical dependencies of context.In addition,the sentence-oriented word position describes a critical factor that influences the contextual information of a targeted sentence.Therefore,knowledge of the position-oriented information of words in a sentence has been considered significant.In this study,we propose to use word embedding,tree-based representation,and contextual position information in combination to evaluate whether their combination will improve the result’s effectiveness or not.In the meantime,their joint utilization enhances the accurate identification and extraction of targeted aspect terms,which also influences their classification process.In this research paper,we propose a method named Attention Based Multi-Channel Convolutional Neural Net-work(Att-MC-CNN)that jointly utilizes these three deep features such as word embedding with tree-based structure and contextual position informa-tion.These three parameters deliver to Multi-Channel Convolutional Neural Network(MC-CNN)that identifies and extracts the potential terms and classifies their polarities.In addition,these terms have been further filtered with the attention mechanism,which determines the most significant words.The empirical analysis proves the proposed approach’s effectiveness compared to existing techniques when evaluated on standard datasets.The experimental results represent our approach outperforms in the F1 measure with an overall achievement of 94%in identifying aspects and 92%in the task of sentiment classification. 展开更多
关键词 Sentiment analysis word embedding aspect extraction consistency tree multichannel convolutional neural network contextual position information
下载PDF
基于Word2Vec和改进注意力机制AlexNet-2的文本分类方法 被引量:12
2
作者 钟桂凤 庞雄文 隋栋 《计算机科学》 CSCD 北大核心 2022年第4期288-293,共6页
为了提高文本分类的准确性和运行效率,提出一种Word2Vec文本表征和改进注意力机制AlexNet-2的文本分类方法。首先,利用Word2Vec对文本词特征进行嵌入表示,并训练词向量,将文本表示成分布式向量的形式;然后,利用改进的AlexNet-2对长距离... 为了提高文本分类的准确性和运行效率,提出一种Word2Vec文本表征和改进注意力机制AlexNet-2的文本分类方法。首先,利用Word2Vec对文本词特征进行嵌入表示,并训练词向量,将文本表示成分布式向量的形式;然后,利用改进的AlexNet-2对长距离词相依性进行有效编码,同时对模型添加注意力机制,以高效学习目标词的上下文嵌入语义,并根据词向量的输入与最终预测结果的相关性,进行词权重的调整。实验在3个公开数据集中进行评估,分析了大量样本标注和少量样本标注的情形。实验结果表明,与已有的优秀方法相比,所提方法可以明显提高文本分类的性能和运行效率。 展开更多
关键词 文本分类 注意力机制 AlexNet-2模型 上下文嵌入 词相依性
下载PDF
深层差异特征增强的机器翻译自动评价
3
作者 支思威 李茂西 +1 位作者 吴水秀 陈有德 《中文信息学报》 CSCD 北大核心 2024年第10期46-53,共8页
机器翻译自动评价任务将机器翻译系统输出译文与人工参考译文进行对比定量计算翻译质量,在机器翻译的研究和应用中发挥着重要作用。当前主流的方法是使用预训练上下文语言模型表征机器翻译和人工参考译文,将两者的表征向量直接拼接输入... 机器翻译自动评价任务将机器翻译系统输出译文与人工参考译文进行对比定量计算翻译质量,在机器翻译的研究和应用中发挥着重要作用。当前主流的方法是使用预训练上下文语言模型表征机器翻译和人工参考译文,将两者的表征向量直接拼接输入前馈神经网络层以预测翻译质量;它没有在统一语义空间对两者之间的差异进行显式建模。该文提出基于深层差异特征增强的机器翻译自动评价方法,使用多头注意力机制深层抽象机器翻译和人工参考译文,利用两者在统一语义空间的差异特征增强当前最先进的自动评价方法UniTE_UP,将它们抽取的特征进行深层交互,以对机器翻译和人工参考译文之间的差异进行直接显式建模。在WMT'21机器翻译自动评价基准数据集上的实验结果表明,深层差异特征增强的自动评价方法能有效提高机器翻译自动评价与人工评价的相关性,消融实验和深入的实验分析进一步揭示了深层差异特征的有效性。 展开更多
关键词 机器翻译 自动评价 多头注意力 预训练上下文词向量 差异特征
下载PDF
多特征融合的句子级译文质量估计方法 被引量:4
4
作者 叶娜 王远远 蔡东风 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第2期167-174,共8页
与传统的机器译文评价方法不同,译文质量估计技术旨在无参考译文的情况下对机器译文质量进行评价.针对目前流行的基于深度学习的译文质量估计方法因数据匮乏和模型限制导致所提取的深度学习特征不充分的现状,提出一种多特征融合的方法.... 与传统的机器译文评价方法不同,译文质量估计技术旨在无参考译文的情况下对机器译文质量进行评价.针对目前流行的基于深度学习的译文质量估计方法因数据匮乏和模型限制导致所提取的深度学习特征不充分的现状,提出一种多特征融合的方法.该方法将词预测特征、语境化词嵌入特征、依存句法特征和基线特征等从不同模型中提取到的特征分别输入到基于循环神经网络的下游模型中,进一步学习后采用不同的特征融合方式进行融合,以此来提高译文质量估计的准确性.通过对比实验表明,本文所提出的多特征融合策略相比于单个特征能更好地对双语信息进行表达,且进一步提高了译文质量估计的皮尔逊相关系数等评价指标. 展开更多
关键词 译文质量估计 特征融合 语境化词嵌入 语言表示 句法
下载PDF
融合BERT语境词向量的译文质量估计方法研究 被引量:7
5
作者 李培芸 李茂西 +1 位作者 裘白莲 王明文 《中文信息学报》 CSCD 北大核心 2020年第3期56-63,共8页
蕴含语义、句法和上下文信息的语境词向量作为一种动态的预训练词向量,在自然语言处理的下游任务中有着广泛应用。然而,在机器译文质量估计中,没有相关研究工作涉及语境词向量。该文提出利用堆叠双向长短时记忆网络将BERT语境词向量引... 蕴含语义、句法和上下文信息的语境词向量作为一种动态的预训练词向量,在自然语言处理的下游任务中有着广泛应用。然而,在机器译文质量估计中,没有相关研究工作涉及语境词向量。该文提出利用堆叠双向长短时记忆网络将BERT语境词向量引入神经译文质量估计中,并通过网络并联的方式与传统的译文质量向量相融合。在CWMT18译文质量估计评测任务数据集上的实验结果表明,融合中上层的BERT语境词向量均显著提高了译文质量估计与人工评价的相关性,并且当对BERT语境词向量的最后4层表示平均池化后引入译文质量估计中对系统性能的提高幅度最大。实验分析进一步揭示了融合语境词向量的方法能利用译文的流利度特征来提高翻译质量估计的效果。 展开更多
关键词 神经译文质量估计 语境词向量 循环神经网络 编码器-解码器网络 质量向量
下载PDF
Pre-trained models for natural language processing: A survey 被引量:158
6
作者 QIU XiPeng SUN TianXiang +3 位作者 XU YiGe SHAO YunFan DAI Ning HUANG XuanJing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第10期1872-1897,共26页
Recently, the emergence of pre-trained models(PTMs) has brought natural language processing(NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language rep... Recently, the emergence of pre-trained models(PTMs) has brought natural language processing(NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy from four different perspectives. Next,we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks. 展开更多
关键词 deep learning neural network natural language processing pre-trained model distributed representation word embedding self-supervised learning language modelling
原文传递
自然语言预训练模型知识增强方法综述 被引量:8
7
作者 孙毅 裘杭萍 +2 位作者 郑雨 张超然 郝超 《中文信息学报》 CSCD 北大核心 2021年第7期10-29,共20页
将知识引入到依靠数据驱动的人工智能模型中是实现人机混合智能的一种重要途径。当前以BERT为代表的预训练模型在自然语言处理领域取得了显著的成功,但是由于预训练模型大多是在大规模非结构化的语料数据上训练出来的,因此可以通过引入... 将知识引入到依靠数据驱动的人工智能模型中是实现人机混合智能的一种重要途径。当前以BERT为代表的预训练模型在自然语言处理领域取得了显著的成功,但是由于预训练模型大多是在大规模非结构化的语料数据上训练出来的,因此可以通过引入外部知识在一定程度上弥补其在确定性和可解释性上的缺陷。该文针对预训练词嵌入和预训练上下文编码器两个预训练模型的发展阶段,分析了它们的特点和缺陷,阐述了知识增强的相关概念,提出了预训练词嵌入知识增强的分类方法,将其分为四类:词嵌入改造、层次化编解码过程、优化注意力和引入知识记忆。将预训练上下文编码器的知识增强方法分为任务特定和任务通用两大类,并根据引入知识的显隐性对其中任务通用的知识增强方法进行了进一步的细分。该文通过分析预训练模型知识增强方法的类型和特点,为实现人机混合的人工智能提供了模式和算法上的参考依据。 展开更多
关键词 预训练语言模型 知识增强 预训练词嵌入 预训练上下文编码器
下载PDF
Unsupervised statistical text simplification using pre-trained language modeling for initialization 被引量:1
8
作者 Jipeng QIANG Feng ZHANG +3 位作者 Yun LI Yunhao YUAN Yi ZHU Xindong WU 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第1期81-90,共10页
Unsupervised text simplification has attracted much attention due to the scarcity of high-quality parallel text simplification corpora. Recent an unsupervised statistical text simplification based on phrase-based mach... Unsupervised text simplification has attracted much attention due to the scarcity of high-quality parallel text simplification corpora. Recent an unsupervised statistical text simplification based on phrase-based machine translation system (UnsupPBMT) achieved good performance, which initializes the phrase tables using the similar words obtained by word embedding modeling. Since word embedding modeling only considers the relevance between words, the phrase table in UnsupPBMT contains a lot of dissimilar words. In this paper, we propose an unsupervised statistical text simplification using pre-trained language modeling BERT for initialization. Specifically, we use BERT as a general linguistic knowledge base for predicting similar words. Experimental results show that our method outperforms the state-of-the-art unsupervised text simplification methods on three benchmarks, even outperforms some supervised baselines. 展开更多
关键词 text simplification pre-trained language modeling BERT word embeddings
原文传递
面向语文辞书编纂的神经网络语料库检索研究
9
作者 胡钦谙 《辞书研究》 2023年第1期36-45,I0002,共11页
语料库检索已成为语文辞书编纂过程中不可或缺的一个步骤。现有的语料库检索系统通常先返回句子列表,然后由人工进行筛选。然而,随着语料库规模不断扩大,海量检索结果与用户有限的语料消化能力之间的矛盾已成为辞书编纂过程中的痛点之... 语料库检索已成为语文辞书编纂过程中不可或缺的一个步骤。现有的语料库检索系统通常先返回句子列表,然后由人工进行筛选。然而,随着语料库规模不断扩大,海量检索结果与用户有限的语料消化能力之间的矛盾已成为辞书编纂过程中的痛点之一。文章注意到,辞书编纂人员在检索语料库时,实际上更为关注的是检索词出现的语境(或称上下文)。语境具有相对稳定的语言学规律,语料库中往往存在着大量符合同一语言规律的语境。这种同质的语境对辞书编纂提供的价值相对有限,单纯依靠增加语料数量对辞书编纂的贡献已呈现出边际效益递减的现象。因此,文章尝试以海量检索结果中的同质语境为突破口,通过人工智能中的注意力机制、上下文相关词向量以及预训练语言模型等技术,以可视化及可交互的形式为辞书编纂人员展现检索结果分布的概貌,批量处理同质的语境,以提升辞书编纂的效率。 展开更多
关键词 语料库检索 语境 语义 上下文相关词向量 注意力机制
下载PDF
上下文感知的判别式主题模型
10
作者 孙志巍 宋明阳 +1 位作者 潘泽华 景丽萍 《山东大学学报(工学版)》 CAS CSCD 北大核心 2022年第4期131-138,150,共9页
为了解决主题识别过程中词的上下文语境缺失问题,通过卷积神经网络将特定的上下文信息嵌入到词向量中,再将词向量输入到判别式主题模型中。本方法可以融合附加标签信息进行有监督的训练,处理文档分类等下游任务。通过与现有判别式主题... 为了解决主题识别过程中词的上下文语境缺失问题,通过卷积神经网络将特定的上下文信息嵌入到词向量中,再将词向量输入到判别式主题模型中。本方法可以融合附加标签信息进行有监督的训练,处理文档分类等下游任务。通过与现有判别式主题模型进行对比和分析,能够获取到更加连贯的主题,同时在文本分类任务上表现出更好的预测性能,从而验证了方法的有效性和准确性。 展开更多
关键词 主题模型 词嵌入表示 判别式模型 上下文语义 文本分类
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部