Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requir...Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.展开更多
We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract informa...We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract information from medical text,facilitating more accurate classification while minimizing the number of trainable parameters.Extensive experiments conducted on various datasets demonstrate the effectiveness of our approach.展开更多
Multimodal sentiment analysis is an essential area of research in artificial intelligence that combines multiple modes,such as text and image,to accurately assess sentiment.However,conventional approaches that rely on...Multimodal sentiment analysis is an essential area of research in artificial intelligence that combines multiple modes,such as text and image,to accurately assess sentiment.However,conventional approaches that rely on unimodal pre-trained models for feature extraction from each modality often overlook the intrinsic connections of semantic information between modalities.This limitation is attributed to their training on unimodal data,and necessitates the use of complex fusion mechanisms for sentiment analysis.In this study,we present a novel approach that combines a vision-language pre-trained model with a proposed multimodal contrastive learning method.Our approach harnesses the power of transfer learning by utilizing a vision-language pre-trained model to extract both visual and textual representations in a unified framework.We employ a Transformer architecture to integrate these representations,thereby enabling the capture of rich semantic infor-mation in image-text pairs.To further enhance the representation learning of these pairs,we introduce our proposed multimodal contrastive learning method,which leads to improved performance in sentiment analysis tasks.Our approach is evaluated through extensive experiments on two publicly accessible datasets,where we demonstrate its effectiveness.We achieve a significant improvement in sentiment analysis accuracy,indicating the supe-riority of our approach over existing techniques.These results highlight the potential of multimodal sentiment analysis and underscore the importance of considering the intrinsic semantic connections between modalities for accurate sentiment assessment.展开更多
This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like r...This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like reasoning+action and retrieval-augmented generation to improve accuracy and reliability.Emphasizing that simple question and answer testing is insufficient,it calls for more nuanced evaluation methods to truly gauge large language models’capabilities in clinical applications.展开更多
This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large mode...This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large models in vertical industries,outlines the challenges and issues confronted in applying large models in the oil and gas sector,and offers prospects for the application of large models in the oil and gas industry.The existing large models can be briefly divided into three categories:large language models,visual large models,and multimodal large models.The application of large models in the oil and gas industry is still in its infancy.Based on open-source large language models,some oil and gas enterprises have released large language model products using methods like fine-tuning and retrieval augmented generation.Scholars have attempted to develop scenario-specific models for oil and gas operations by using visual/multimodal foundation models.A few researchers have constructed pre-trained foundation models for seismic data processing and interpretation,as well as core analysis.The application of large models in the oil and gas industry faces challenges such as current data quantity and quality being difficult to support the training of large models,high research and development costs,and poor algorithm autonomy and control.The application of large models should be guided by the needs of oil and gas business,taking the application of large models as an opportunity to improve data lifecycle management,enhance data governance capabilities,promote the construction of computing power,strengthen the construction of“artificial intelligence+energy”composite teams,and boost the autonomy and control of large model technology.展开更多
Unsupervised text simplification has attracted much attention due to the scarcity of high-quality parallel text simplification corpora. Recent an unsupervised statistical text simplification based on phrase-based mach...Unsupervised text simplification has attracted much attention due to the scarcity of high-quality parallel text simplification corpora. Recent an unsupervised statistical text simplification based on phrase-based machine translation system (UnsupPBMT) achieved good performance, which initializes the phrase tables using the similar words obtained by word embedding modeling. Since word embedding modeling only considers the relevance between words, the phrase table in UnsupPBMT contains a lot of dissimilar words. In this paper, we propose an unsupervised statistical text simplification using pre-trained language modeling BERT for initialization. Specifically, we use BERT as a general linguistic knowledge base for predicting similar words. Experimental results show that our method outperforms the state-of-the-art unsupervised text simplification methods on three benchmarks, even outperforms some supervised baselines.展开更多
Multimodal sentence summarization(MMSS)is a new yet challenging task that aims to generate a concise summary of a long sentence and its corresponding image.Although existing methods have gained promising success in MM...Multimodal sentence summarization(MMSS)is a new yet challenging task that aims to generate a concise summary of a long sentence and its corresponding image.Although existing methods have gained promising success in MMSS,they overlook the powerful generation ability of generative pre-trained language models(GPLMs),which have shown to be effective in many text generation tasks.To fill this research gap,we propose to using GPLMs to promote the performance of MMSS.Notably,adopting GPLMs to solve MMSS inevitably faces two challenges:1)What fusion strategy should we use to inject visual information into GPLMs properly?2)How to keep the GPLM′s generation ability intact to the utmost extent when the visual feature is injected into the GPLM.To address these two challenges,we propose a vision enhanced generative pre-trained language model for MMSS,dubbed as Vision-GPLM.In Vision-GPLM,we obtain features of visual and textual modalities with two separate encoders and utilize a text decoder to produce a summary.In particular,we utilize multi-head attention to fuse the features extracted from visual and textual modalities to inject the visual feature into the GPLM.Meanwhile,we train Vision-GPLM in two stages:the vision-oriented pre-training stage and fine-tuning stage.In the vision-oriented pre-training stage,we particularly train the visual encoder by the masked language model task while the other components are frozen,aiming to obtain homogeneous representations of text and image.In the fine-tuning stage,we train all the components of Vision-GPLM by the MMSS task.Extensive experiments on a public MMSS dataset verify the superiority of our model over existing baselines.展开更多
Open Relation Extraction(ORE)is a task of extracting semantic relations from a text document.Current ORE systems have significantly improved their efficiency in obtaining Chinese relations,when compared with conventio...Open Relation Extraction(ORE)is a task of extracting semantic relations from a text document.Current ORE systems have significantly improved their efficiency in obtaining Chinese relations,when compared with conventional systems which heavily depend on feature engineering or syntactic parsing.However,the ORE systems do not use robust neural networks such as pre-trained language models to take advantage of large-scale unstructured data effectively.In respons to this issue,a new system entitled Chinese Open Relation Extraction with Knowledge Enhancement(CORE-KE)is presented in this paper.The CORE-KE system employs a pre-trained language model(with the support of a Bidirectional Long Short-Term Memory(BiLSTM)layer and a Masked Conditional Random Field(Masked CRF)layer)on unstructured data in order to improve Chinese open relation extraction.Entity descriptions in Wikidata and additional knowledge(in terms of triple facts)extracted from Chinese ORE datasets are used to fine-tune the pre-trained language model.In addition,syntactic features are further adopted in the training stage of the CORE-KE system for knowledge enhancement.Experimental results of the CORE-KE system on two large-scale datasets of open Chinese entities and relations demonstrate that the CORE-KE system is superior to other ORE systems.The F1-scores of the CORE-KE system on the two datasets have given a relative improvement of 20.1%and 1.3%,when compared with benchmark ORE systems,respectively.The source code is available at https:/github.COm/cjwen15/CORE-KE.展开更多
Conversational large language models(LLMs)such as ChatGPT and GPT-4 have recently exhibited remarkable capabilities across various domains,capturing widespread attention from the public.To facilitate this line of rese...Conversational large language models(LLMs)such as ChatGPT and GPT-4 have recently exhibited remarkable capabilities across various domains,capturing widespread attention from the public.To facilitate this line of research,in this paper,we report the development of MOSS,an open-sourced conversational LLM that contains 16 B parameters and can perform a variety of instructions in multi-turn interactions with humans.The base model of MOSS is pre-trained on large-scale unlabeled English,Chinese,and code data.To optimize the model for dialogue,we generate 1.1 M synthetic conversations based on user prompts collected through our earlier versions of the model API.We then perform preference-aware training on preference data annotated from AI feedback.Evaluation results on real-world use cases and academic benchmarks demonstrate the effectiveness of the proposed approaches.In addition,we present an effective practice to augment MOSS with several external tools.Through the development of MOSS,we have established a complete technical roadmap for large language models from pre-training,supervised fine-tuning to alignment,verifying the feasibility of chatGPT under resource-limited conditions and providing a reference for both the academic and industrial communities.Model weights and code are publicly available at https://github.com/OpenMOSS/MOSS.展开更多
Knowledge plays a critical role in artificial intelligence.Recently,the extensive success of pre-trained language models(PLMs)has raised significant attention about how knowledge can be acquired,maintained,updated and...Knowledge plays a critical role in artificial intelligence.Recently,the extensive success of pre-trained language models(PLMs)has raised significant attention about how knowledge can be acquired,maintained,updated and used by language models.Despite the enormous amount of related studies,there is still a lack of a unified view of how knowledge circulates within language models throughout the learning,tuning,and application processes,which may prevent us from further understanding the connections between current progress or realizing existing limitations.In this survey,we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods,and investigating how knowledge circulates when it is built,maintained and used.To this end,we systematically review existing studies of each period of the knowledge life cycle,summarize the main challenges and current limitations,and discuss future directions.展开更多
In recent years,with the great success of pre-trained language models,the pre-trained BERT model has been gradually applied to the field of source code understanding.However,the time cost of training a language model ...In recent years,with the great success of pre-trained language models,the pre-trained BERT model has been gradually applied to the field of source code understanding.However,the time cost of training a language model from zero is very high,and how to transfer the pre-trained language model to the field of smart contract vulnerability detection is a hot research direction at present.In this paper,we propose a hybrid model to detect common vulnerabilities in smart contracts based on a lightweight pre-trained languagemodel BERT and connected to a bidirectional gate recurrent unitmodel.The downstream neural network adopts the bidirectional gate recurrent unit neural network model with a hierarchical attention mechanism to mine more semantic features contained in the source code of smart contracts by using their characteristics.Our experiments show that our proposed hybrid neural network model SolBERT-BiGRU-Attention is fitted by a large number of data samples with smart contract vulnerabilities,and it is found that compared with the existing methods,the accuracy of our model can reach 93.85%,and the Micro-F1 Score is 94.02%.展开更多
As an essential category of public event management and control,sentiment analysis of online public opinion text plays a vital role in public opinion early warning,network rumor management,and netizens’person-ality p...As an essential category of public event management and control,sentiment analysis of online public opinion text plays a vital role in public opinion early warning,network rumor management,and netizens’person-ality portraits under massive public opinion data.The traditional sentiment analysis model is not sensitive to the location information of words,it is difficult to solve the problem of polysemy,and the learning representation ability of long and short sentences is very different,which leads to the low accuracy of sentiment classification.This paper proposes a sentiment analysis model PERT-BiLSTM-Att for public opinion text based on the pre-training model of the disordered language model,bidirectional long-term and short-term memory network and attention mechanism.The model first uses the PERT model pre-trained from the lexical location information of a large amount of corpus to process the text data and obtain the dynamic feature representation of the text.Then the semantic features are input into BiLSTM to learn context sequence information and enhance the model’s ability to represent long sequences.Finally,the attention mechanism is used to focus on the words that contribute more to the overall emotional tendency to make up for the lack of short text representation ability of the traditional model,and then the classification results are output through the fully connected network.The experimental results show that the classification accuracy of the model on NLPCC14 and weibo_senti_100k public data sets reach 88.56%and 97.05%,respectively,and the accuracy reaches 95.95%on the data set MDC22 composed of Meituan,Dianping and Ctrip comment.It proves that the model has a good effect on sentiment analysis of online public opinion texts on different platforms.The experimental results on different datasets verify the model’s effectiveness in applying sentiment analysis of texts.At the same time,the model has a strong generalization ability and can achieve good results for sentiment analysis of datasets in different fields.展开更多
A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in re...A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in reservoir performance analysis(RPA).The LLM is constructed for RPA scenarios with incremental pre-training,fine-tuning,and functional subsystems coupling.Functional subsystem and efficient coupling methods are proposed based on named entity recognition(NER),tool invocation,and Text-to-SQL construction,all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA.This study conducted a detailed accuracy test on feature extraction models,tool classification models,data retrieval models and analysis recommendation models.The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis.The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing.Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA.The research results provide a powerful support to the application of LLM in reservoir performance analysis.展开更多
Recently, the emergence of pre-trained models(PTMs) has brought natural language processing(NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language rep...Recently, the emergence of pre-trained models(PTMs) has brought natural language processing(NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy from four different perspectives. Next,we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.展开更多
Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including pa...Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed.展开更多
Earth observations,especially satellite data,have produced a wealth of methods and results in meeting global challenges,often presented in unstructured texts such as papers or reports.Accurate extraction of satellite ...Earth observations,especially satellite data,have produced a wealth of methods and results in meeting global challenges,often presented in unstructured texts such as papers or reports.Accurate extraction of satellite and instrument entities from these unstructured texts can help to link and reuse Earth observation resources.The direct use of an existing dictionary to extract satellite and instrument entities suffers from the problem of poor matching,which leads to low recall.In this study,we present a named entity recognition model to automatically extract satellite and instrument entities from unstructured texts.Due to the lack of manually labeled data,we apply distant supervision to automatically generate labeled training data.Accordingly,we fine-tune the pre-trained language model with early stopping and a weighted cross-entropy loss function.We propose the dictionary-based self-training method to correct the incomplete annotations caused by the distant supervision method.Experiments demonstrate that our method achieves significant improvements in both precision and recall compared to dictionary matching or standard adaptation of pre-trained language models.展开更多
文摘Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.
文摘We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract information from medical text,facilitating more accurate classification while minimizing the number of trainable parameters.Extensive experiments conducted on various datasets demonstrate the effectiveness of our approach.
基金supported by Science and Technology Research Project of Jiangxi Education Department.Project Grant No.GJJ2203306.
文摘Multimodal sentiment analysis is an essential area of research in artificial intelligence that combines multiple modes,such as text and image,to accurately assess sentiment.However,conventional approaches that rely on unimodal pre-trained models for feature extraction from each modality often overlook the intrinsic connections of semantic information between modalities.This limitation is attributed to their training on unimodal data,and necessitates the use of complex fusion mechanisms for sentiment analysis.In this study,we present a novel approach that combines a vision-language pre-trained model with a proposed multimodal contrastive learning method.Our approach harnesses the power of transfer learning by utilizing a vision-language pre-trained model to extract both visual and textual representations in a unified framework.We employ a Transformer architecture to integrate these representations,thereby enabling the capture of rich semantic infor-mation in image-text pairs.To further enhance the representation learning of these pairs,we introduce our proposed multimodal contrastive learning method,which leads to improved performance in sentiment analysis tasks.Our approach is evaluated through extensive experiments on two publicly accessible datasets,where we demonstrate its effectiveness.We achieve a significant improvement in sentiment analysis accuracy,indicating the supe-riority of our approach over existing techniques.These results highlight the potential of multimodal sentiment analysis and underscore the importance of considering the intrinsic semantic connections between modalities for accurate sentiment assessment.
文摘This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like reasoning+action and retrieval-augmented generation to improve accuracy and reliability.Emphasizing that simple question and answer testing is insufficient,it calls for more nuanced evaluation methods to truly gauge large language models’capabilities in clinical applications.
基金Supported by the National Natural Science Foundation of China(72088101,42372175)PetroChina Science and Technology Innovation Fund Program(2021DQ02-0904)。
文摘This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large models in vertical industries,outlines the challenges and issues confronted in applying large models in the oil and gas sector,and offers prospects for the application of large models in the oil and gas industry.The existing large models can be briefly divided into three categories:large language models,visual large models,and multimodal large models.The application of large models in the oil and gas industry is still in its infancy.Based on open-source large language models,some oil and gas enterprises have released large language model products using methods like fine-tuning and retrieval augmented generation.Scholars have attempted to develop scenario-specific models for oil and gas operations by using visual/multimodal foundation models.A few researchers have constructed pre-trained foundation models for seismic data processing and interpretation,as well as core analysis.The application of large models in the oil and gas industry faces challenges such as current data quantity and quality being difficult to support the training of large models,high research and development costs,and poor algorithm autonomy and control.The application of large models should be guided by the needs of oil and gas business,taking the application of large models as an opportunity to improve data lifecycle management,enhance data governance capabilities,promote the construction of computing power,strengthen the construction of“artificial intelligence+energy”composite teams,and boost the autonomy and control of large model technology.
基金supported by the National Natural Science Foundation of China(Grant Nos.62076217 and 61906060)and the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)of the Ministry of Education,China(IRT17R32).
文摘Unsupervised text simplification has attracted much attention due to the scarcity of high-quality parallel text simplification corpora. Recent an unsupervised statistical text simplification based on phrase-based machine translation system (UnsupPBMT) achieved good performance, which initializes the phrase tables using the similar words obtained by word embedding modeling. Since word embedding modeling only considers the relevance between words, the phrase table in UnsupPBMT contains a lot of dissimilar words. In this paper, we propose an unsupervised statistical text simplification using pre-trained language modeling BERT for initialization. Specifically, we use BERT as a general linguistic knowledge base for predicting similar words. Experimental results show that our method outperforms the state-of-the-art unsupervised text simplification methods on three benchmarks, even outperforms some supervised baselines.
文摘Multimodal sentence summarization(MMSS)is a new yet challenging task that aims to generate a concise summary of a long sentence and its corresponding image.Although existing methods have gained promising success in MMSS,they overlook the powerful generation ability of generative pre-trained language models(GPLMs),which have shown to be effective in many text generation tasks.To fill this research gap,we propose to using GPLMs to promote the performance of MMSS.Notably,adopting GPLMs to solve MMSS inevitably faces two challenges:1)What fusion strategy should we use to inject visual information into GPLMs properly?2)How to keep the GPLM′s generation ability intact to the utmost extent when the visual feature is injected into the GPLM.To address these two challenges,we propose a vision enhanced generative pre-trained language model for MMSS,dubbed as Vision-GPLM.In Vision-GPLM,we obtain features of visual and textual modalities with two separate encoders and utilize a text decoder to produce a summary.In particular,we utilize multi-head attention to fuse the features extracted from visual and textual modalities to inject the visual feature into the GPLM.Meanwhile,we train Vision-GPLM in two stages:the vision-oriented pre-training stage and fine-tuning stage.In the vision-oriented pre-training stage,we particularly train the visual encoder by the masked language model task while the other components are frozen,aiming to obtain homogeneous representations of text and image.In the fine-tuning stage,we train all the components of Vision-GPLM by the MMSS task.Extensive experiments on a public MMSS dataset verify the superiority of our model over existing baselines.
基金the high-level university construction special project of Guangdong province,China 2019(No.5041700175)the new engineering research and practice project of the Ministry of Education,China(NO.E-RGZN20201036)。
文摘Open Relation Extraction(ORE)is a task of extracting semantic relations from a text document.Current ORE systems have significantly improved their efficiency in obtaining Chinese relations,when compared with conventional systems which heavily depend on feature engineering or syntactic parsing.However,the ORE systems do not use robust neural networks such as pre-trained language models to take advantage of large-scale unstructured data effectively.In respons to this issue,a new system entitled Chinese Open Relation Extraction with Knowledge Enhancement(CORE-KE)is presented in this paper.The CORE-KE system employs a pre-trained language model(with the support of a Bidirectional Long Short-Term Memory(BiLSTM)layer and a Masked Conditional Random Field(Masked CRF)layer)on unstructured data in order to improve Chinese open relation extraction.Entity descriptions in Wikidata and additional knowledge(in terms of triple facts)extracted from Chinese ORE datasets are used to fine-tune the pre-trained language model.In addition,syntactic features are further adopted in the training stage of the CORE-KE system for knowledge enhancement.Experimental results of the CORE-KE system on two large-scale datasets of open Chinese entities and relations demonstrate that the CORE-KE system is superior to other ORE systems.The F1-scores of the CORE-KE system on the two datasets have given a relative improvement of 20.1%and 1.3%,when compared with benchmark ORE systems,respectively.The source code is available at https:/github.COm/cjwen15/CORE-KE.
基金supported by the National Natural Science Foundation of China(No.62022027).
文摘Conversational large language models(LLMs)such as ChatGPT and GPT-4 have recently exhibited remarkable capabilities across various domains,capturing widespread attention from the public.To facilitate this line of research,in this paper,we report the development of MOSS,an open-sourced conversational LLM that contains 16 B parameters and can perform a variety of instructions in multi-turn interactions with humans.The base model of MOSS is pre-trained on large-scale unlabeled English,Chinese,and code data.To optimize the model for dialogue,we generate 1.1 M synthetic conversations based on user prompts collected through our earlier versions of the model API.We then perform preference-aware training on preference data annotated from AI feedback.Evaluation results on real-world use cases and academic benchmarks demonstrate the effectiveness of the proposed approaches.In addition,we present an effective practice to augment MOSS with several external tools.Through the development of MOSS,we have established a complete technical roadmap for large language models from pre-training,supervised fine-tuning to alignment,verifying the feasibility of chatGPT under resource-limited conditions and providing a reference for both the academic and industrial communities.Model weights and code are publicly available at https://github.com/OpenMOSS/MOSS.
基金supported by the National Natural Science Foundation of China(No.62122077)CAS Project for Young Scientists in Basic Research,China(No.YSBR-040).
文摘Knowledge plays a critical role in artificial intelligence.Recently,the extensive success of pre-trained language models(PLMs)has raised significant attention about how knowledge can be acquired,maintained,updated and used by language models.Despite the enormous amount of related studies,there is still a lack of a unified view of how knowledge circulates within language models throughout the learning,tuning,and application processes,which may prevent us from further understanding the connections between current progress or realizing existing limitations.In this survey,we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods,and investigating how knowledge circulates when it is built,maintained and used.To this end,we systematically review existing studies of each period of the knowledge life cycle,summarize the main challenges and current limitations,and discuss future directions.
基金supported by the National Natural Science Foundation of China(Grant Nos.62272120,62106030,U20B2046,62272119,61972105)the Technology Innovation and Application Development Projects of Chongqing(Grant Nos.cstc2021jscx-gksbX0032,cstc2021jscxgksbX0029).
文摘In recent years,with the great success of pre-trained language models,the pre-trained BERT model has been gradually applied to the field of source code understanding.However,the time cost of training a language model from zero is very high,and how to transfer the pre-trained language model to the field of smart contract vulnerability detection is a hot research direction at present.In this paper,we propose a hybrid model to detect common vulnerabilities in smart contracts based on a lightweight pre-trained languagemodel BERT and connected to a bidirectional gate recurrent unitmodel.The downstream neural network adopts the bidirectional gate recurrent unit neural network model with a hierarchical attention mechanism to mine more semantic features contained in the source code of smart contracts by using their characteristics.Our experiments show that our proposed hybrid neural network model SolBERT-BiGRU-Attention is fitted by a large number of data samples with smart contract vulnerabilities,and it is found that compared with the existing methods,the accuracy of our model can reach 93.85%,and the Micro-F1 Score is 94.02%.
基金supported by the Chongqing Natural Science Foundation of China (Grant No.CSTB2022NSCQ-MSX1417)the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No.KJZD-K202200513)Chongqing Normal University Fund (Grant No.22XLB003).
文摘As an essential category of public event management and control,sentiment analysis of online public opinion text plays a vital role in public opinion early warning,network rumor management,and netizens’person-ality portraits under massive public opinion data.The traditional sentiment analysis model is not sensitive to the location information of words,it is difficult to solve the problem of polysemy,and the learning representation ability of long and short sentences is very different,which leads to the low accuracy of sentiment classification.This paper proposes a sentiment analysis model PERT-BiLSTM-Att for public opinion text based on the pre-training model of the disordered language model,bidirectional long-term and short-term memory network and attention mechanism.The model first uses the PERT model pre-trained from the lexical location information of a large amount of corpus to process the text data and obtain the dynamic feature representation of the text.Then the semantic features are input into BiLSTM to learn context sequence information and enhance the model’s ability to represent long sequences.Finally,the attention mechanism is used to focus on the words that contribute more to the overall emotional tendency to make up for the lack of short text representation ability of the traditional model,and then the classification results are output through the fully connected network.The experimental results show that the classification accuracy of the model on NLPCC14 and weibo_senti_100k public data sets reach 88.56%and 97.05%,respectively,and the accuracy reaches 95.95%on the data set MDC22 composed of Meituan,Dianping and Ctrip comment.It proves that the model has a good effect on sentiment analysis of online public opinion texts on different platforms.The experimental results on different datasets verify the model’s effectiveness in applying sentiment analysis of texts.At the same time,the model has a strong generalization ability and can achieve good results for sentiment analysis of datasets in different fields.
基金Supported by the National Talent Fund of the Ministry of Science and Technology of China(20230240011)China University of Geosciences(Wuhan)Research Fund(162301192687)。
文摘A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in reservoir performance analysis(RPA).The LLM is constructed for RPA scenarios with incremental pre-training,fine-tuning,and functional subsystems coupling.Functional subsystem and efficient coupling methods are proposed based on named entity recognition(NER),tool invocation,and Text-to-SQL construction,all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA.This study conducted a detailed accuracy test on feature extraction models,tool classification models,data retrieval models and analysis recommendation models.The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis.The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing.Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA.The research results provide a powerful support to the application of LLM in reservoir performance analysis.
基金the National Natural Science Foundation of China(Grant Nos.61751201 and 61672162)the Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX01)and ZJLab。
文摘Recently, the emergence of pre-trained models(PTMs) has brought natural language processing(NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy from four different perspectives. Next,we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
文摘Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed.
基金supported by the National Key Research and Development Program of China:[grant number 2019YFE0126400].
文摘Earth observations,especially satellite data,have produced a wealth of methods and results in meeting global challenges,often presented in unstructured texts such as papers or reports.Accurate extraction of satellite and instrument entities from these unstructured texts can help to link and reuse Earth observation resources.The direct use of an existing dictionary to extract satellite and instrument entities suffers from the problem of poor matching,which leads to low recall.In this study,we present a named entity recognition model to automatically extract satellite and instrument entities from unstructured texts.Due to the lack of manually labeled data,we apply distant supervision to automatically generate labeled training data.Accordingly,we fine-tune the pre-trained language model with early stopping and a weighted cross-entropy loss function.We propose the dictionary-based self-training method to correct the incomplete annotations caused by the distant supervision method.Experiments demonstrate that our method achieves significant improvements in both precision and recall compared to dictionary matching or standard adaptation of pre-trained language models.