Document processing in natural language includes retrieval,sentiment analysis,theme extraction,etc.Classical methods for handling these tasks are based on models of probability,semantics and networks for machine learn...Document processing in natural language includes retrieval,sentiment analysis,theme extraction,etc.Classical methods for handling these tasks are based on models of probability,semantics and networks for machine learning.The probability model is loss of semantic information in essential,and it influences the processing accuracy.Machine learning approaches include supervised,unsupervised,and semi-supervised approaches,labeled corpora is necessary for semantics model and supervised learning.The method for achieving a reliably labeled corpus is done manually,it is costly and time-consuming because people have to read each document and annotate the label of each document.Recently,the continuous CBOW model is efficient for learning high-quality distributed vector representations,and it can capture a large number of precise syntactic and semantic word relationships,this model can be easily extended to learn paragraph vector,but it is not precise.Towards these problems,this paper is devoted to developing a new model for learning paragraph vector,we combine the CBOW model and CNNs to establish a new deep learning model.Experimental results show that paragraph vector generated by the new model is better than the paragraph vector generated by CBOW model in semantic relativeness and accuracy.展开更多
Neural Machine Translation(NMT)based system is an important technology for translation applications.However,there is plenty of rooms for the improvement of NMT.In the process of NMT,traditional word vector cannot dist...Neural Machine Translation(NMT)based system is an important technology for translation applications.However,there is plenty of rooms for the improvement of NMT.In the process of NMT,traditional word vector cannot distinguish the same words under different parts of speech(POS).Aiming to alleviate this problem,this paper proposed a new word vector training method based on POS feature.It can efficiently improve the quality of translation by adding POS feature to the training process of word vectors.In the experiments,we conducted extensive experiments to evaluate our methods.The experimental result shows that the proposed method is beneficial to improve the quality of translation from English into Chinese.展开更多
文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布...文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布,计算单词与其上下文词的主题相似度,作为主题语义信息融入到词向量中,代替one-hot向量输入至Sem2vec模型,在最大化对数似然目标函数约束下,训练Sem2vec模型的最优参数,最终输出增强的语义词向量表示,并进一步得到文本的语义增强表示。在不同数据集上的实验结果表明,相比其他经典模型,Sem2vec模型的语义词向量之间的语义相似度计算更为准确。另外,根据Sem2vec模型得到的文本语义向量,在多种文本分类算法上的分类结果,较其他经典模型可以提升0.58%~3.5%,同时也提升了时间性能。展开更多
基金The authors would like to thank all anonymous reviewers for their suggestions and feedback.This work Supported by the National Natural Science,Foundation of China(No.61379052,61379103)the National Key Research and Development Program(2016YFB1000101)+1 种基金The Natural Science Foundation for Distinguished Young Scholars of Hunan Province(Grant No.14JJ1026)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20124307110015).
文摘Document processing in natural language includes retrieval,sentiment analysis,theme extraction,etc.Classical methods for handling these tasks are based on models of probability,semantics and networks for machine learning.The probability model is loss of semantic information in essential,and it influences the processing accuracy.Machine learning approaches include supervised,unsupervised,and semi-supervised approaches,labeled corpora is necessary for semantics model and supervised learning.The method for achieving a reliably labeled corpus is done manually,it is costly and time-consuming because people have to read each document and annotate the label of each document.Recently,the continuous CBOW model is efficient for learning high-quality distributed vector representations,and it can capture a large number of precise syntactic and semantic word relationships,this model can be easily extended to learn paragraph vector,but it is not precise.Towards these problems,this paper is devoted to developing a new model for learning paragraph vector,we combine the CBOW model and CNNs to establish a new deep learning model.Experimental results show that paragraph vector generated by the new model is better than the paragraph vector generated by CBOW model in semantic relativeness and accuracy.
基金This work is supported by the National Natural Science Foundation of China(61872231,61701297).
文摘Neural Machine Translation(NMT)based system is an important technology for translation applications.However,there is plenty of rooms for the improvement of NMT.In the process of NMT,traditional word vector cannot distinguish the same words under different parts of speech(POS).Aiming to alleviate this problem,this paper proposed a new word vector training method based on POS feature.It can efficiently improve the quality of translation by adding POS feature to the training process of word vectors.In the experiments,we conducted extensive experiments to evaluate our methods.The experimental result shows that the proposed method is beneficial to improve the quality of translation from English into Chinese.
文摘文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布,计算单词与其上下文词的主题相似度,作为主题语义信息融入到词向量中,代替one-hot向量输入至Sem2vec模型,在最大化对数似然目标函数约束下,训练Sem2vec模型的最优参数,最终输出增强的语义词向量表示,并进一步得到文本的语义增强表示。在不同数据集上的实验结果表明,相比其他经典模型,Sem2vec模型的语义词向量之间的语义相似度计算更为准确。另外,根据Sem2vec模型得到的文本语义向量,在多种文本分类算法上的分类结果,较其他经典模型可以提升0.58%~3.5%,同时也提升了时间性能。