A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic ...A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.展开更多
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat...A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.展开更多
In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is p...In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique.展开更多
The precast composite reinforced concrete wall with the advantages of fewer joints,superior impermeability and rapid construction provides an efficient and environmental friendly alternative in the construction of und...The precast composite reinforced concrete wall with the advantages of fewer joints,superior impermeability and rapid construction provides an efficient and environmental friendly alternative in the construction of underground utility tunnels in the last few years.To investigate the seismic performance of precast concrete composite walls of utility tunnels with grouting-sleeve connection under out-ofplane loads,a series of quasi-static cyclic tests were performed on the full-scale sidewall specimens with different axial compression ratios in this study.The experimental results including the failure modes,crack distributions,and the influence of different connections on the out-of-plane seismic performance of precast concrete composite wall were carefully examined and compared with those from the cyclic tests of the cast-in-place sidewalls of the utility tunnel.The test results show that the seismic performance of the precast concrete composite sidewall specimen,such as the hysteresis curves,the ultimate bearing capacity,stiffness degradation pattern and the ductility ratio,is basically the same as that of the cast-in-place specimen,indicating that the seismic performance of the prefabricated structure is equivalent to that of the cast-in-place structure.Moreover,the grouting-sleeves of the joints can effectively transfer the reinforcement stress until the failure of the precast concrete composite sidewall specimens,which exhibits excellent out-of-plane ductility and serviceability.展开更多
This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system work...This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system works in two distinct phases with two different resisting mechanisms: during the construction phase, the truss structure bears the precast floor system and the resisting system is that of a simply supported steel truss;once the concrete has hardened, the truss structure becomes the reinforcing element of a steel-concrete composite beam, where it is also in a pre-stressed condition due to the loads carried before the hardening of concrete. Within this framework, the effects of the diagonal bars on the bending stiffness of this composite beam are investigated. First, a closed-form solution for the evaluation of the equivalent bending stiffness is derived. Subsequently, the influence of geometrical and mechanical characteristics of shear reinforcement is studied. Finally, results obtained from parametric and numerical analyses are discussed.展开更多
The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study inv...The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study investigated the use of engineered cementitious composite (ECC) in the cast-in-place beam-to-wall joints and the upper regions of the composite coupling beams as an innovative method to improve the seismic performance ofprecast RQ coupled shear walls. Two 1/2-scale precast coupled shear walls were tested under reversed cyclic loading and seismic behavior in terms of failure characteristic, mechanical characteristic value, load-displacement hysteresis curves, load-displacement envelope relationship, stiffness degradation, ductility and energy dissipation capacity were evaluated. Research results show that the substitution of concrete with ECC in the critical cast-in-place regions proved to be an effective method to improve the seismic performance of the two-story spatial of precast RC coupled shear walls.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No.50478027)
文摘A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.
基金National Natural Science Foundation of China under Grant No.51148009National Natural Science Foundation of China under Grant No.50978005Project High-level Personnel in Beijing under Grant No.PHR20100502
文摘A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
基金Beijing Natural Science Foundation of China under Grant No.8122004the National Natural Science Foundation of China under Grant No.51178010the National Science and Technology Support Program of China under Grant No.2012BAJ13B02
文摘In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique.
基金supported by the National Natural Science Foundation of China(Grant Nos.51978020,52378470,and 52220105011).
文摘The precast composite reinforced concrete wall with the advantages of fewer joints,superior impermeability and rapid construction provides an efficient and environmental friendly alternative in the construction of underground utility tunnels in the last few years.To investigate the seismic performance of precast concrete composite walls of utility tunnels with grouting-sleeve connection under out-ofplane loads,a series of quasi-static cyclic tests were performed on the full-scale sidewall specimens with different axial compression ratios in this study.The experimental results including the failure modes,crack distributions,and the influence of different connections on the out-of-plane seismic performance of precast concrete composite wall were carefully examined and compared with those from the cyclic tests of the cast-in-place sidewalls of the utility tunnel.The test results show that the seismic performance of the precast concrete composite sidewall specimen,such as the hysteresis curves,the ultimate bearing capacity,stiffness degradation pattern and the ductility ratio,is basically the same as that of the cast-in-place specimen,indicating that the seismic performance of the prefabricated structure is equivalent to that of the cast-in-place structure.Moreover,the grouting-sleeves of the joints can effectively transfer the reinforcement stress until the failure of the precast concrete composite sidewall specimens,which exhibits excellent out-of-plane ductility and serviceability.
文摘This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system works in two distinct phases with two different resisting mechanisms: during the construction phase, the truss structure bears the precast floor system and the resisting system is that of a simply supported steel truss;once the concrete has hardened, the truss structure becomes the reinforcing element of a steel-concrete composite beam, where it is also in a pre-stressed condition due to the loads carried before the hardening of concrete. Within this framework, the effects of the diagonal bars on the bending stiffness of this composite beam are investigated. First, a closed-form solution for the evaluation of the equivalent bending stiffness is derived. Subsequently, the influence of geometrical and mechanical characteristics of shear reinforcement is studied. Finally, results obtained from parametric and numerical analyses are discussed.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0701703)the Fundamental Research Funds for the Central Universities+1 种基金Project Supported by the Research and Innovation Program for Graduate Students in Jiangsu(Grant No.KYLX16_0257)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.CE02-2-47)
文摘The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study investigated the use of engineered cementitious composite (ECC) in the cast-in-place beam-to-wall joints and the upper regions of the composite coupling beams as an innovative method to improve the seismic performance ofprecast RQ coupled shear walls. Two 1/2-scale precast coupled shear walls were tested under reversed cyclic loading and seismic behavior in terms of failure characteristic, mechanical characteristic value, load-displacement hysteresis curves, load-displacement envelope relationship, stiffness degradation, ductility and energy dissipation capacity were evaluated. Research results show that the substitution of concrete with ECC in the critical cast-in-place regions proved to be an effective method to improve the seismic performance of the two-story spatial of precast RC coupled shear walls.