Precast segmental column bridges exhibit various construction advantages in comparison to traditional monolithic column bridges.However,the lack of cognitions on seismic behaviors has seriously restricted their applic...Precast segmental column bridges exhibit various construction advantages in comparison to traditional monolithic column bridges.However,the lack of cognitions on seismic behaviors has seriously restricted their applications and developments.In this paper,comprehensive investigations are conducted to analyze the dynamic characteristics of precast segmental column bridges under near-fault,forward-directivity ground motions.First,the finite-element models of two comparable bridges with precast segmental columns and monolithic columns are constructed by using OpenSees software,and the nonlinearities of the bridges are considered.Next,three different earthquake loadings are meticulously set up to handle engineering problems,namely recorded near-and far-field ground motions,parameterized pulses,and pulse and residual components extracted from real records.Finally,based on the models and earthquake sets,extensive explorations are carried out.The results show that near-fault forward-directivity ground motions are more threatening than far-field ones;precast segmental column bridges may suffer more pounding impacts than monolithic bridges;the“narrow band”effect caused by near-fault,forward-directivity ground motions may occur in bridges with shorter periods than pulse periods;and pulse and residual components play different roles in seismic responses.展开更多
Considering the wide application of precast segmental bridge columns(PSBCs)in engineering practice,impact-resistant performance has gained significant attention.However,few studies have focused on PSBCs subjected to h...Considering the wide application of precast segmental bridge columns(PSBCs)in engineering practice,impact-resistant performance has gained significant attention.However,few studies have focused on PSBCs subjected to high-energy impacts caused by heavy truck collisions.Therefore,the behavior of PSBCs under a heavy truck impact was investigated in this study using high-fidelity finite element(FE)models.The detailed FE modeling methods of the PSBCs and heavy trucks were validated against experimental tests.The validated modeling methods were employed to simulate collisions between PSBCs and heavy trucks.The simulation results demonstrated that the engine and cargo caused two major peak impact forces during collision.Subsequently,the impact force,failure mode,displacement,and internal force of the PSBCs under heavy truck impacts were scrutinized.An extensive study was performed to assess the influence of the section size,truck weight,impact velocity,and number of precast segments on the impact responses.The truck weight was found to have a minor effect on the engine impact force.Damage was found to be localized at the bottom of the three segments,with the top remaining primarily undamaged.This parametric study demonstrated that larger cross-sections may be a preferred option to protect PSBCs against the impact of heavy trucks.展开更多
基金National Natural Science Foundation of China under Grant Nos.U1434205 and 51678490the Major Research Plan of China National Railway Ministry of China under Grant Nos.2015G002-B and P2018G007the National Key R&D Program of China under Grant No.2017YFC1500803。
文摘Precast segmental column bridges exhibit various construction advantages in comparison to traditional monolithic column bridges.However,the lack of cognitions on seismic behaviors has seriously restricted their applications and developments.In this paper,comprehensive investigations are conducted to analyze the dynamic characteristics of precast segmental column bridges under near-fault,forward-directivity ground motions.First,the finite-element models of two comparable bridges with precast segmental columns and monolithic columns are constructed by using OpenSees software,and the nonlinearities of the bridges are considered.Next,three different earthquake loadings are meticulously set up to handle engineering problems,namely recorded near-and far-field ground motions,parameterized pulses,and pulse and residual components extracted from real records.Finally,based on the models and earthquake sets,extensive explorations are carried out.The results show that near-fault forward-directivity ground motions are more threatening than far-field ones;precast segmental column bridges may suffer more pounding impacts than monolithic bridges;the“narrow band”effect caused by near-fault,forward-directivity ground motions may occur in bridges with shorter periods than pulse periods;and pulse and residual components play different roles in seismic responses.
基金The authors would like to acknowledge the financial support received from the National Natural Science Foundation of China(Grant Nos.52278188 and 51978258)Natural Science Foundation of the Jiangsu Province(No.BK20211196)+1 种基金Chongqing Natural Science Foundation(CSTB2022NSCQ-MSX0969)the SOAR fellowship from the University of Sydney.
文摘Considering the wide application of precast segmental bridge columns(PSBCs)in engineering practice,impact-resistant performance has gained significant attention.However,few studies have focused on PSBCs subjected to high-energy impacts caused by heavy truck collisions.Therefore,the behavior of PSBCs under a heavy truck impact was investigated in this study using high-fidelity finite element(FE)models.The detailed FE modeling methods of the PSBCs and heavy trucks were validated against experimental tests.The validated modeling methods were employed to simulate collisions between PSBCs and heavy trucks.The simulation results demonstrated that the engine and cargo caused two major peak impact forces during collision.Subsequently,the impact force,failure mode,displacement,and internal force of the PSBCs under heavy truck impacts were scrutinized.An extensive study was performed to assess the influence of the section size,truck weight,impact velocity,and number of precast segments on the impact responses.The truck weight was found to have a minor effect on the engine impact force.Damage was found to be localized at the bottom of the three segments,with the top remaining primarily undamaged.This parametric study demonstrated that larger cross-sections may be a preferred option to protect PSBCs against the impact of heavy trucks.