期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
General approach for atomically dispersed precious metal catalysts toward hydrogen reaction 被引量:2
1
作者 Ruisong Li Daoxiong Wu +8 位作者 Peng Rao Peilin Deng Jing Li Junming Luo Wei Huang Qi Chen Zhenye Kang Yijun Shen Xinlong Tian 《Carbon Energy》 SCIE CSCD 2023年第7期100-111,共12页
As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with hig... As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with high atomic utilization open up a desirable perspective for the scale applications of precious metals,but the general and facile preparation of various precious metal-based SACs remains challenging.Herein,a general movable printing method has been developed to synthesize various precious metal-based SACs,such as Pd,Pt,Rh,Ir,and Ru,and the features of highly dispersed single atoms with nitrogen coordination have been identified by comprehensive characterizations.More importantly,the synthesized Pt-and Ru-based SACs exhibit much higher activities than their corresponding nanoparticle counterparts for hydrogen oxidation reaction and hydrogen evolution reaction(HER).In addition,the Pd-based SAC delivers an excellent activity for photocatalytic hydrogen evolution.Especially for the superior mass activity of Ru-based SACs toward HER,density functional theory calculations confirmed that the adsorption of the hydrogen atom has a significant effect on the spin state and electronic structure of the catalysts. 展开更多
关键词 hydrogen evolution reaction hydrogen oxidation reaction photocatalytic hydrogen evolution reaction precious metals single-atom catalysts
下载PDF
Recent advances in carbon-supported non-precious metal singleatom catalysts for energy conversion electrocatalysis 被引量:1
2
作者 Li-Xia Liu Yangyang Ding +9 位作者 Linan Zhu Jin-Cheng Li Huitong Du Xiang Li Zhaoyuan Lyu Dan Du Fuqiang Liu Yuanyuan Wang Wenlei Zhu Yuehe Lin 《National Science Open》 2023年第2期115-160,共46页
Non-precious metal single-atom catalysts(NPM-SACs)with unique electronic structures and coordination environments have gained much attention in electrocatalysis owing to their low cost,high atomic utilization,and high... Non-precious metal single-atom catalysts(NPM-SACs)with unique electronic structures and coordination environments have gained much attention in electrocatalysis owing to their low cost,high atomic utilization,and high performance.NPM-SACs on carbon support(NPM-SACs/CS)are promising because of the carbon substrate with a large surface area,excellent electrical conductivity,and high chemical stability.This review provides an overview of recent developments in NPM-SACs/CS for the electrocatalytic field.First,the state-of-the-art synthesis methods and advanced characterization techniques of NPM-SACs/CS are discussed in detail.Then,the structural adjustment strategy of NPM-SACs/CS for optimizing electrocatalytic performance is introduced concisely.Furthermore,we provide a comprehensive summary of recent advances in developing NPM-SACs/CS for important electrochemical reactions,including carbon dioxide reduction reaction,hydrogen evolution reaction,oxygen evolution reaction,oxygen reduction reaction,and nitrogen reduction reaction.In the end,the existing challenges and future opportunities of NPM-SACs/CS in the electrocatalytic field are highlighted. 展开更多
关键词 single-atom catalysts non-precious metal electrocatalytic reaction carbon-supported
原文传递
Exploration of the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer for proton exchange membrane fuel cells
3
作者 Shiqu CHEN Silei XIANG +5 位作者 Zehao TAN Huiyuan LI Xiaohui YAN Jiewei YIN Shuiyun SHEN Junliang ZHANG 《Frontiers in Energy》 SCIE CSCD 2023年第1期123-133,共11页
High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells(PEMFCs),in which Pt-based catalysts employed in the cathodic catalyst layer(CCL)account for the maj... High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells(PEMFCs),in which Pt-based catalysts employed in the cathodic catalyst layer(CCL)account for the major portion of the cost.Although nonprecious metal catalysts(NPMCs)show appreciable activity and stability in the oxygen reduction reaction(ORR),the performance of fuel cells based on NPMCs remains unsatisfactory compared to those using Pt-based CCL.Therefore,most studies on NPMC-based fuel cells focus on developing highly active catalysts rather than facilitating oxygen transport.In this work,the oxygen transport behavior in CCLs based on highly active Fe-N-C catalysts is comprehensively explored through the elaborate design of two types of membrane electrode structures,one containing low-Pt-based CCL and NPMCbased dummy catalyst layer(DCL)and the other containing only the NPMC-based CCL.Using Zn-N-C based DCLs of different thickness,the bulk oxygen transport resistance at the unit thickness in NPMC-based CCL was quantified via the limiting current method combined with linear fitting analysis.Then,the local and bulk resistances in NPMC-based CCLs were quantified via the limiting current method and scanning electron microscopy,respectively.Results show that the ratios of local and bulk oxygen transport resistances in NPMCbased CCL are 80%and 20%,respectively,and that an enhancement of local oxygen transport is critical to greatly improve the performance of NPMC-based PEMFCs.Furthermore,the activity of active sites per unit in NPMCbased CCLs was determined to be lower than that in the Pt-based CCL,thus explaining worse cell performance of NPMC-based membrane electrode assemblys(MEAs).It is believed that the development of NPMC-based PEMFCs should proceed not only through the design of catalysts with higher activity but also through the improvement of oxygen transport in the CCL. 展开更多
关键词 proton exchange membrane fuel cells(PEMFCs) non-precious metal catalyst(NPMC) cathode catalyst layer(CCL) local and bulk oxygen transport resistance
原文传递
Manufacture of Precious Metal Products: Advancement and Prospect
4
作者 MOROZOVA L. E YASTREBOV V. A VASEKIN V. V. 《贵金属》 CAS CSCD 北大核心 2012年第A01期121-123,共3页
A survey about OJSC "SIC Supermetal'" as a processor of secondary precious metal raw materials and a manufacturer of precious metal products for technical purposes,has been presented.Brief information ha... A survey about OJSC "SIC Supermetal'" as a processor of secondary precious metal raw materials and a manufacturer of precious metal products for technical purposes,has been presented.Brief information has been given about the basic technologies and materials used in production,including dispersion strengthened materials on the basis of platinum alloys and laminar composites. 展开更多
关键词 precious metals non-affinage processing dispersion-strengthened materials laminar composites solid-stamped orifice plates glass-melting apparatuses and bushings catalyst systems
下载PDF
Role of local coordination in bimetallic sites for oxygen reduction: A theoretical analysis 被引量:1
5
作者 Yuqi Yang Hao Zhang +8 位作者 Zhaofeng Liang Yaru Yin Bingbao Mei Fei Song Fanfei Sun Songqi Gu Zheng Jiang Yuen Wu Zhiyuan Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第5期131-137,共7页
Understanding of the oxygen reduction reaction(ORR)mechanism for single atom catalysts is pivotal for the rational design of non-precious metal cathode materials and the commercialization of fuel cells.Herein,a series... Understanding of the oxygen reduction reaction(ORR)mechanism for single atom catalysts is pivotal for the rational design of non-precious metal cathode materials and the commercialization of fuel cells.Herein,a series of non-precious metal electrocatalysts based on nitrogen-doped bimetallic(Fe and Co)carbide were modeled by density functional theory calculations to predict the corresponding reaction pathways.The study elucidated prior oxygen adsorption on the Fe atom in the dual site and the modifier role of Co atoms to tune the electronic structures of Fe.The reaction activity was highly correlated with the bimetallic center and the coordination environment of the adjacent nitrogen.Interestingly,the preadsorption of*OH resulted in the apparent change of metal atoms'electronic states with the d-band center shifting toward the Fermi level,thereby boosting reaction activity.The result should help promote the fundamental understanding of active sites in ORR catalysts and provide an effective approach to the design of highly efficient ORR catalysts on an atomic scale. 展开更多
关键词 non-precious metal catalysts Bimetallic-sites Oxygen reduction reaction Density functional theory
下载PDF
A non-precious metal catalyst for oxygen reduction prepared by heat-treating a mechanical mixture of carbon black,melamine and cobalt chloride 被引量:1
6
作者 Yu-Jun Si Zhong-Ping Xiong +2 位作者 Chang-Guo Chen Ping Liu Hui-Juan Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2013年第12期1109-1111,共3页
A non-precious metal catalyst CoMe]C for the oxygen reduction reaction is prepared by heat-treating a mechanical mixture of carbon black, melamine and cobalt chloride at 600 under nitrogen atmosphere for 2 h. The cata... A non-precious metal catalyst CoMe]C for the oxygen reduction reaction is prepared by heat-treating a mechanical mixture of carbon black, melamine and cobalt chloride at 600 under nitrogen atmosphere for 2 h. The catalytic activity of CoMe/C is characterized by the electrochemical linear sweep voltammetry technique. The onset reduction potential of the catalyst is 0.55 V (vs. SCE) at a scanning rate of 5 mV/s in 0.5 mol/L H2SO4 solution. The formation of the ORR activity sites of CoMe/C is facilitated by metallic β- cobalt. 展开更多
关键词 Oxygen reduction non-precious metal catalyst Preparation Mechanical method
原文传递
Precious metal-support interaction in automotive exhaust catalysts 被引量:9
7
作者 郑婷婷 何俊俊 +2 位作者 赵云昆 夏文正 何洁丽 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第2期97-107,共11页
Precious metal-support interaction plays an important role in thermal stability and catalytic performance of the automotive exhaust catalysts. The support is not only a cartier for active compotmds in catalysts but al... Precious metal-support interaction plays an important role in thermal stability and catalytic performance of the automotive exhaust catalysts. The support is not only a cartier for active compotmds in catalysts but also can improve the dispersion of precious metals and suppress the sintering of precious metals at high temperature; meanwhile, noble metals can also enhance the redox performance and oxygen storage capacity of support. The mechanism of metal-support interactions mainly includes electronic interaction, formation of alloy and inward diffusion of metal into the support or covered by support. The form and degree of precious metal-sup- port interaction depend on many factors, including the content of precious metal, the species of support and metal, and preparation methods. The research results about strong metal-support interaction (SMSI) gave a theory support for developing a kind of new cata- lyst with excellent performance. This paper reviewed the interaction phenomenon and mechanism of precious metals (Pt, Pd, Rh) and support such as A1203, CeO2, and CeO2-based oxides in automotive exhaust catalysts. The factors that affect SMSI and the catalysts developed by SMSI were also discussed. 展开更多
关键词 strong metal-support interaction automotive exhaust catalyst precious metal AL2O3 CeO2-based oxides rare earths
原文传递
Enhanced confinement synthesis of atomically dispersed Fe-N-C catalyst from resin polymer for oxygen reduction 被引量:1
8
作者 Ailing Song Hao Tian +5 位作者 Wang Yang Wu Yang Yuhan Xie Hao Liu Guoxiu Wang Guangjie Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期630-636,共7页
Due to larger atom utilization,unique electronic properties and unsaturated coordination,atomically dispersed non-precious metal catalysts with outstanding performances have received great attention in electrocatalysi... Due to larger atom utilization,unique electronic properties and unsaturated coordination,atomically dispersed non-precious metal catalysts with outstanding performances have received great attention in electrocatalysis.Considering the challenge of serious aggregation,rational synthesis of an atomic catalyst with good dispersion of atoms is paramount to the development of these catalysts.Herein,we report an enhanced confinement strategy to synthesize a catalyst comprised of atomically dispersed Fe supported on porous nitrogen-doped graphitic carbon from the novel and more cross-linkable Melamine-Glyoxal Resin.Densified isolated grid trapping,excessive melamine restricting,and nitrogen anchoring are strongly combined to ensure the final atomic-level dispersion of metal atoms.Experimental studies revealed enhanced kinetics of the obtained catalyst towards oxygen reduction reaction(ORR).This catalytic activity originates from the highly active surface with atomically dispersed iron sites as well as the multi-level three-dimensional structure with fast mass and electron transfer.The enhanced confinement strategy endows the resin-derived atomic catalyst with a great prospect to develop for commercialization in future. 展开更多
关键词 non-precious metal catalysts Atomic catalyst Oxygen reduction reaction Confinement synthesis
下载PDF
Influence of Ce_(0.35)Zr_(0.55)Y_(0.10) Solid Solution on Performance of Pt-Rh Three-Way Catalysts 被引量:1
9
作者 郭家秀 袁书华 +3 位作者 龚茂初 沈美 钟俊波 陈耀强 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第2期179-183,共5页
Ce0.35Zr0.55Y0. 10 solid solution was prepared by co-precipitation technique and characterized by specific surface area measurements (BET) and X-ray diffraction (XRD). Ce0.35Zr0.55Y0.10 was used to prepare low Pt-... Ce0.35Zr0.55Y0. 10 solid solution was prepared by co-precipitation technique and characterized by specific surface area measurements (BET) and X-ray diffraction (XRD). Ce0.35Zr0.55Y0.10 was used to prepare low Pt-Rh threeway catalyst (TWC), and its influence on the performance of TWC was investigated. The results revealed that Ce0.35 Zr0.55Y0.10 had a cubic structure similar to Ce0.50Zr0.50O2 and its specific surface area can maintain higher than Ce0.50 Zr0.50O2 after 1000 ℃ calcination for 5 h. Being hydrothermal aged at 1000 ℃ for 5 h, the catalyst containing Ce0.35 Zr0.55Y0.10 still exhibited higher conversion of C3H8, CO and NO and lower light-off temperature in comparison with Ce0.50Zr0.50O2 TWC. 展开更多
关键词 low precious metal three-way catalysts rare earths
下载PDF
Reduced formation of peroxide and radical species stabilises iron-based hybrid catalysts in polymer electrolyte membrane fuel cells
10
作者 Dongyoon Shin Sabita Bhandari +6 位作者 Marc FTesch Shannon ABonke Frédéric Jaouen Sonia Chabbra Christoph Pratsch Alexander Schnegg Anna K.Mechler 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期433-438,共6页
The incorporation of Pt into an iron-nitrogen-carbon(Fe NC)catalyst for the oxygen reduction reaction(ORR)was recently shown to enhance catalyst stability without Pt directly contributing to the ORR activity.However,t... The incorporation of Pt into an iron-nitrogen-carbon(Fe NC)catalyst for the oxygen reduction reaction(ORR)was recently shown to enhance catalyst stability without Pt directly contributing to the ORR activity.However,the mechanistic origin of this stabilisation remained obscure.It is established herein with rotating ring disc experiments that the side product,H_(2)O_(2),which is known to damage FeNC catalysts,is suppressed by the presence of Pt.The formation of reactive oxygen species is additionally inhibited,independent of intrinsic H_(2)O_(2) formation,as determined by electron paramagnetic resonance.Transmission electron microscopy identifies an oxidised Fe-rich layer covering the Pt particles,thus explaining the inactivity of the latter towards the ORR.These insights develop understanding of Fe NC degradation mechanisms during ORR catalysis,and crucially establish the required properties of a precious metal free protective catalyst to improve Fe NC stability in acidic media. 展开更多
关键词 ELECTROCHEMISTRY Fuel cells Oxygen reduction reaction non-precious metal catalyst Hybrid catalyst Stability
下载PDF
The effect of temperature on ionic liquid modified Fe-N-C catalysts for alkaline oxygen reduction reaction
11
作者 Thomas Wolker Kai Brunnengräber +4 位作者 Ioanna Martinaiou Nick Lorenz Gui-Rong Zhang Ulrike I.Kramm Bastian J.M.Etzold 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期324-329,共6页
Modifying solid catalysts with an ionic liquid layer is an effective approach for boosting the performance of both Pt-based and non-precious metal catalysts toward the oxygen reduction reaction. While most studies ope... Modifying solid catalysts with an ionic liquid layer is an effective approach for boosting the performance of both Pt-based and non-precious metal catalysts toward the oxygen reduction reaction. While most studies operated at room temperature it remains unclear whether the IL-associated boosting effect can be maintained at elevated temperature, which is of high relevance for practical applications in low temperature fuel cells. Herein, Fe-N-C catalysts were modified by introducing small amounts of hydrophobic ionic liquid, resulting in boosted electrocatalytic activity towards the alkaline oxygen reduction reaction at room temperature. It is demonstrated that the boosting effect can be maintained and even strengthened when increasing the electrolyte temperature up to 70℃. These findings show for the first time that the incorporation of ionic liquid is a suited method to obtain advanced noble metal-free electrocatalysts that can be applied at operating temperature condition. 展开更多
关键词 Oxygen reduction reaction non-precious metal catalyst Ionic liquid Fe-N-C catalyst Temperature effect
下载PDF
Manufacture of Catalyst Systems for Ammonia Conversion
12
作者 GAKH S. V. SAVENKOV D. A. 《贵金属》 CAS CSCD 北大核心 2012年第A01期71-75,共5页
Platinum catalyst gauzes have been in use since the moment of development of the process of catalyst oxidation of ammonia for production of nitric acid or hydrocyanic acid.Catalyst gauzes are usually made of platinum ... Platinum catalyst gauzes have been in use since the moment of development of the process of catalyst oxidation of ammonia for production of nitric acid or hydrocyanic acid.Catalyst gauzes are usually made of platinum or its alloys with rhodium and palladium.These precious metals have remarkable properties that make them ideal catalysts for acceleration of the ammonia/oxygen reaction.In 2008,OJSC "SIC 'Supermetal'" and Umicore AG&Co.KG launched a production line for Pt-alloy-based catalyst systems to be used for ammonia oxidation in the production of weak nitric acid.Catalyst systems consist of a pack of catalyst gauzes and a pack of catchment gauzes,which are made using flat-bed knitting machines and wire-cloth looms.Today,up-to-date catalyst systems MKSprecise TM are being manufactured,the basic advantages of which are an individual structure of gauzes and composition of the material,which allows to define precisely the position of each gauze in the catalyst pack,a high activity of the catalyst pack,direct catching of platinum and rhodium in the catalyst system,and a reasonable combination of single-and multilayer types of gauzes.This makes it possible to vary the configuration of the catalyst and select an optimum composition of the system to ensure the maximum efficiency of the ammonia oxidation process.We also produce the catchment systems that allow to find the best decision from the economic point view for each individual case. 展开更多
关键词 MKSprecise TM catalyst systems high selectivity of the process modern technology of catching reduction of irrevocable losses of precious metals increase in the degree of conversion significant reduction of ammonia consumption
下载PDF
A new approach of CeO_2 and La_2O_3 effects on the three-way catalysts containing low precious metals
13
作者 汪文栋 林培琰 +3 位作者 伏义路 俞寿明 孟明 张霄鹏 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2000年第5期673-682,共10页
A series of three-way catalysts (TWCs),containing a small amount of precious metals (PMs,including Pt,Pd and Rh) and a large amount of promoters CeO2 and La2O3,were prepared with different precursor compounds and vari... A series of three-way catalysts (TWCs),containing a small amount of precious metals (PMs,including Pt,Pd and Rh) and a large amount of promoters CeO2 and La2O3,were prepared with different precursor compounds and various doped manners.Crystal phases,dispersion of cerium and lanthanum,textural structure and thermal stability of the catalysts were investigated by XRD,XPS and pore parameters determination.The catalytic performance was studied by the measurements of CO,C3H6 and NO conversions on dependence of temperature at stoichimetric number point (S=1.00),and from S=0.75 to 1.30 at 280℃ or 340℃ for fresh or aged samples,respectively.The correlation between the catalytic performance and the characteristics of fresh and aged samples were discussed.The results show that the sample,in which CeO2 and La2O3 are doped with mixed oxide powders,possesses poor dispersion and less thermal stability,and the conversions of NO and C3H6 are apparently lower than those of the samples aged at 850℃ The main reason is due to the lanthanum enrichment on the surface.The precious metals and cerium may be covered and enveloped,and the PMs located on the internal microporous surface where no cerium and lanthanum exist,are easier to sinter and oxidize.For the sample doped with La(NO3)3 and Ce(NO3)3 aqueous solutions,high dispersion and thermal stable CeO2 La2O3 solid solution on all the surface of microporous γ-Al2O3 is identified.The solid solution CeO2-La2O3 also possessed high dispersion in the sample doped with La2O3 powder and Ce(NO3)3 aqueous solution.The last two aged samples keep higher NO conversion at S≥1 region. 展开更多
关键词 Doped manners cerium oxide lanthanum oxide three-way catalyst low precious metals
全文增补中
Recent progress on precious metal single atom materials for water splitting catalysis 被引量:10
14
作者 Lei Zhou Shi-Yu Lu Shaojun Guo 《SusMat》 2021年第2期194-210,共17页
Electrochemical water splitting for hydrogen production has sparked intensive interests because it provides a new approach for sustainable energy resources and the avoidance of environmental problems.The precious meta... Electrochemical water splitting for hydrogen production has sparked intensive interests because it provides a new approach for sustainable energy resources and the avoidance of environmental problems.The precious metal-based sin-gle atomic catalysts(PMSACs)have been widely employed in water splitting catalysis by virtue of their maximum atom utilization and unique electronic structure,which can reduce metal amounts and remain high catalytic perfor-mance simultaneously.In this review,we will summarize recent research efforts toward developing SACs based on precious metals with excellent performance for electrochemical water splitting catalysis.First,the synthesis strategies for PMSACs will be classified and introduced including high-temperature pyrolysis,electrochemical method,photochemical reduction,wet chemistry method,etc.Then,a short description of characterization techniques for SACs will be given,which mainly involves the aberration-corrected scanning-transmission electron microscopy(AC-STEM)and X-ray absorption spectroscopy(XAS).In particular,the relationship between the electronic structure of the precious metal atomic sites and performance for water splitting will be discussed according to the the-oretical and experimental results.Finally,a brief perspective will be provided to highlight the challenges and opportunities for the development of novel PMSACs suitable for electrochemical water splitting applications. 展开更多
关键词 precious metals single atom catalysts water splitting
原文传递
Solar-assisted selective separation and recovery of precious group metals from deactivated air purification catalysts
15
作者 Meijun Wu Yao Chen +5 位作者 Zhenpeng Guo Xinru Wang Hanyun Zhang Ting Zhang Shuhui Guan Zhenfeng Bian 《Science Bulletin》 SCIE EI CAS 2024年第15期2379-2386,共8页
The mitigation of environmental and energy crises could be advanced by reclaiming platinum group precious metals(PGMs) from decommissioned air purification catalysts. However, the complexity of catalyst composition an... The mitigation of environmental and energy crises could be advanced by reclaiming platinum group precious metals(PGMs) from decommissioned air purification catalysts. However, the complexity of catalyst composition and the high chemical inertness of PGMs significantly impede this process. Consequently,recovering PGMs from used industrial catalysts is crucial and challenging. This study delves into an environmentally friendly approach to selectively recover PGMs from commercial air purifiers using photocatalytic redox technology. Our investigation focuses on devising a comprehensive strategy for treating three-way catalysts employed in automotive exhaust treatment. By meticulously pretreating and modifying reaction conditions, we achieved noteworthy results, completely dissolving and separating rhodium(Rh), palladium(Pd), and platinum(Pt) within a 12-h time frame. Importantly, the solubility selectivity persists despite the remarkably similar physicochemical properties of Rh, Pd, and Pt. To bolster the environmental sustainability of our method, we harness sunlight as the energy source to activate the photocatalysts, facilitating the complete dissolution of precious metals under natural light irradiation. This ecofriendly recovery approach demonstrated on commercial air purifiers, exhibits promise for broader application to a diverse range of deactivated air purification catalysts, potentially enabling implementation on a large scale. 展开更多
关键词 Photocatalysis Air purification catalysts Platinum group precious metals Selective recovery
原文传递
Selective extraction and conversion of lignin in actual biomass to monophenols: A review 被引量:7
16
作者 Zhicheng Jiang Changwei Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期947-956,共10页
Our over dependency on the fossil resource for industrial chemicals and fuels faces great challenges. Recently, the production of monophenols from lignin in lignocellulosic biomass is regarded as a promising process f... Our over dependency on the fossil resource for industrial chemicals and fuels faces great challenges. Recently, the production of monophenols from lignin in lignocellulosic biomass is regarded as a promising process for sustainable biofuels. This article discusses the conversion of lignin in actual biomass directly to monophenols. The two step way including extraction of lignin from biomass and further degradation of the lignin oligomers to monophenols is especially discussed. The obtained monophenols can also be converted to chemicals with low-oxygen content via hydrodeoxygenation process. For extraction of lignin, co-solvent system is the most adopted for hydrolysis or solvolysis of lignin assisted by acid or alkaline catalysts. The structure of the obtained oligomers derived from lignin is discussed in detail. For lignin depolymerization, hydrogenolysis is an efficient method with the use of gaseous hydrogen or alcohols as hydrogen source. At the meantime, depolymerization mechanism and the route for repolymerization of the reaction intermediates are presented here. In hydrodeoxygenation process, metal catalysts, especially noble metal catalysts are required. The precise effects of the reaction solvents and catalysts on extraction and degradation of lignin need to be further investigated, and this will benefit to design more efficient strategies for lignin utilization. © 2016 Science Press 展开更多
关键词 BIOMASS catalystS Extraction HYDROLYSIS Industrial chemicals OLIGOMERS precious metals Reaction intermediates REVIEWS Solvents
下载PDF
Template-assisted synthesis of hierarchically porous Co3O4 with enhanced oxygen evolution activity
17
作者 Lan Yao Hexiang Zhong +2 位作者 Chengwei Deng Xianfeng Li Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期153-157,共5页
Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness o... Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness of OER and the high prices as well as the scarcity of the most active precious metal electrocatalysts are the major bottleneck in these devices. Developing low-cost non-precious metal catalysts with high activity and stability for OER is highly desirable. A facile, in situ template method combining the dodecyl benzene sulfuric acid sodium(SDBS) assisted hydrothermal process with subsequent high-temperature treatment was developed to prepare porous Co3O4 with improved surface area and hierarchical porous structure as precious catalysts alternative for oxygen evolution reaction(OER). Due to the unique structure, the as-prepared catalyst shows higher electrocatalytic activity than Co3O4 prepared by traditional thermal-decomposition method(noted as Co3O4-T) and commercial IrO2 catalyst for OER in 0.1M KOH aqueous solution. Moreover, it displays improved stability than Co3O4-T. The results demonstrate a highly efficient, scalable, and low cost method for developing highly active and stable OER electrocatalysts in alkaline solutions. 展开更多
关键词 Oxygen evolution reaction Co3O4 non-precious metal catalysts High activity High stability
下载PDF
Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells 被引量:4
18
作者 Gang WU 《Frontiers in Energy》 SCIE CSCD 2017年第3期286-298,共13页
To significantly reduce the cost of proton exchange membrane fuel cells, platinum-group metal (PGM)-free cathode catalysts are highly desirable. Current M-N-C (M: Fe, Co or Mn) catalysts are considered the most p... To significantly reduce the cost of proton exchange membrane fuel cells, platinum-group metal (PGM)-free cathode catalysts are highly desirable. Current M-N-C (M: Fe, Co or Mn) catalysts are considered the most promising due to their encouraging performance. The challenge thus has been their stability under acidic conditions, which has hindered their use for any practical applications. In this review, based on the author's research experience in the field for more than 10 years, current challenges and possible solutions to overcome these problems were discussed. The current Edisonian approach (i.e., trial and error) to developing PGM-free catalysts has been ineffective in achieving revolutionary breakthroughs. Novel synthesis techniques based on a more methodolo- gical approach will enable atomic control and allow us to achieve optimal electronic and geometric structures for active sites uniformly dispersed within the 3D architec- tures. Structural and chemical controlled precursors such as metal-organic frameworks are highly desirable for making catalysts with an increased density of active sites and strengthening local bonding structures among N, C and metals. Advanced electrochemical and physical characterization, such as electron microscopy and X-ray absorption spectroscopy should be combined with first principle density functional theory (DFT) calculations to fully elucidate the active site structures. 展开更多
关键词 oxygen reduction fuel cells CATHODE non- precious metal catalysts carbon nanocomposites
原文传递
Four-channel catalytic micro-reactor based on alumina hollow fiber membrane for efficient catalytic oxidation of CO
19
作者 Baichuan Xu Bin Wang Tao Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS 2024年第7期140-147,共8页
The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a fou... The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future. 展开更多
关键词 Catalytic converter precious metal catalyst Phase inversion method Hollow fiber membrane CO oxidation
下载PDF
Improved performance of direct methanol fuel cells with the porous catalyst layer using highly-active nanofiber catalyst 被引量:1
20
作者 Yosuke Tsukagoshi Hirokazu Ishitobi Nobuyoshi Nakagawa 《Carbon Resources Conversion》 2018年第1期61-72,共12页
PtRu supported on TiO2-embedded carbon nanofibers(PtRu/TECNF),which was recently reported as a highly-active catalyst for methanol oxidation,was applied to a direct methanol fuel cell(DMFC),and the power generation pe... PtRu supported on TiO2-embedded carbon nanofibers(PtRu/TECNF),which was recently reported as a highly-active catalyst for methanol oxidation,was applied to a direct methanol fuel cell(DMFC),and the power generation performance was compared to that using the commercial PtRu/C.Before the comparison,the effect of the catalyst loading on the power density of the DMFC was investigated using PtRu(18 wt%)/TECNF.The DMFC power density showed a maximum at about a 1.5 mg cm2 PtRu loading that corresponds to about an 80 mm layer thickness.A catalyst layer thicker than this value reduced the power density probably due to the concentration overvoltage.The PtRu content in the PtRu/TECNF was then increased to 30 wt%or more to reduce the layer thickness and to increase the power density.The DMFC performance was compared to that of different anode catalysts at a 1 mg cm2 PtRu loading.The power density was maximized using the PtRu30 wt%/TECNF,which showed a 173 mW cm2 at 353 K and had 66 mm layer thick,that was 26%higher than that of commercial PtRu/C.The current–voltage curve of the DMFC with the PtRu/TECNF suggested an improved mass transport overvoltage,but a little improvement in the activation one despite using the catalyst with about a 2 times higher activity compared to that of the commercial PtRu/C.This was attributed to the lower Pt utilization of the nanofiber catalyst layer. 展开更多
关键词 Direct methanol fuel cell catalyst layer structure PtRu catalyst TiO2-embedded carbon nanofiber support Methanol oxidation reaction Power density precious metal loading Concentration overvoltage
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部