Identification of the optimal operating conditions and evaluation of their robustness are critical issues for industrial processes.A standard procedure,for modelling a laboratory-scale wire-to-cylinder electrostatic p...Identification of the optimal operating conditions and evaluation of their robustness are critical issues for industrial processes.A standard procedure,for modelling a laboratory-scale wire-to-cylinder electrostatic precipitator and for guiding the research of the set point,is presented.The procedure consists of formulating a set of recommendations regarding the choice of parameter values for electrostatic precipitation.The experiments were carried out on a laboratory cylindrical precipitator,built by one of the authors,with samples of wood particles.The parameters considered are the applied high voltage U,the air flow F,and the quantity of dust in air m.Several"one-factor-at-a-time"followed by factorial composite design experiments were performed,based on the following three-step strategy:1)Identify the domain of variation of the variables;2)Determine the mathematical model of the process outcome;3)Validation of the math-ematical model and optimisation of the process.展开更多
The crystal structure evolution of the Cu-rich nano precipitates from bcc to 9R during thermal aging was studied in nuclear reactor pressure vessel (RPV) model steels. The specimens, contained higher copper and nick...The crystal structure evolution of the Cu-rich nano precipitates from bcc to 9R during thermal aging was studied in nuclear reactor pressure vessel (RPV) model steels. The specimens, contained higher copper and nickel contents than commercially available one, were heated at 890 ~C for 0.5 h and then water quenched followed by tempering at 0(50 ~C for I0 h and aging at 400 ~C for 1000 h. It was observed that bcc and 9R orthogonal structure, as well as 9R orthogonal and 9R monoclinic structure, coexist in a single Cu-rich nano precipitate. Further analyses pointed out that Cu-rich nano precipitates of bcc structure were not stable, it may preferentially transform to 9R orthogonal structure and then to 9R monoclinic structure. This results showed that the crystal structure evolution of the Cu-rich nano precipitates was complex.展开更多
基金supported by the Framework of a TASSILI Project,jointly financed by the French and Algerian Governments.
文摘Identification of the optimal operating conditions and evaluation of their robustness are critical issues for industrial processes.A standard procedure,for modelling a laboratory-scale wire-to-cylinder electrostatic precipitator and for guiding the research of the set point,is presented.The procedure consists of formulating a set of recommendations regarding the choice of parameter values for electrostatic precipitation.The experiments were carried out on a laboratory cylindrical precipitator,built by one of the authors,with samples of wood particles.The parameters considered are the applied high voltage U,the air flow F,and the quantity of dust in air m.Several"one-factor-at-a-time"followed by factorial composite design experiments were performed,based on the following three-step strategy:1)Identify the domain of variation of the variables;2)Determine the mathematical model of the process outcome;3)Validation of the math-ematical model and optimisation of the process.
基金financially supported by the National Basic Research Program of China(No.2011CB610503)National Natural Science Foundation of China(No.50931003)Ministry of Major Subject of Shanghai(No.S30107)
文摘The crystal structure evolution of the Cu-rich nano precipitates from bcc to 9R during thermal aging was studied in nuclear reactor pressure vessel (RPV) model steels. The specimens, contained higher copper and nickel contents than commercially available one, were heated at 890 ~C for 0.5 h and then water quenched followed by tempering at 0(50 ~C for I0 h and aging at 400 ~C for 1000 h. It was observed that bcc and 9R orthogonal structure, as well as 9R orthogonal and 9R monoclinic structure, coexist in a single Cu-rich nano precipitate. Further analyses pointed out that Cu-rich nano precipitates of bcc structure were not stable, it may preferentially transform to 9R orthogonal structure and then to 9R monoclinic structure. This results showed that the crystal structure evolution of the Cu-rich nano precipitates was complex.