Based on daily precipitation data from 163 meteorological stations, this study investigated precipitation changes in the mid-latitudes of the Chinese mainland(MCM) during 1960–2014 using the climatic trend coeffici...Based on daily precipitation data from 163 meteorological stations, this study investigated precipitation changes in the mid-latitudes of the Chinese mainland(MCM) during 1960–2014 using the climatic trend coefficient, least-squared regression analysis, and a non-parametric Mann-Kendall test.According to the effects of the East Asian summer monsoon on the MCM and the climatic trend coefficient of annual precipitation during 1960–2014, we divided the MCM into the western MCM and eastern MCM. The western MCM was further divided into the western MCM1 and western MCM2 in terms of the effects of the East Asian summer monsoon. The main results were as follows:(1) During the last four decades of the 20^(th) century, the area-averaged annual precipitation presented a significant increasing trend in the western MCM, but there was a slight decreasing trend in the eastern MCM, where a seesaw pattern was apparent. However, in the 21^(st) century, the area-averaged annual precipitation displayed a significant increasing trend in both the western and eastern MCM.(2) The trend in area-averaged seasonal precipitation during 1960–2014 in the western MCM was consistent with that in the eastern MCM in winter and spring. However, the trend in area-averaged summer precipitation during1960–2014 displayed a seesaw pattern between the western and eastern MCM.(3) On an annual basis,both the trend in rainstorms and heavy rain displayed a seesaw pattern between the western and eastern MCM.(4) The precipitation intensity in rainstorms, heavy rain, and moderate rain made a greater contribution to changes in the total precipitation than precipitation frequency. The results of this study will improve our understanding of the trends and differences in precipitation changes in different areas of the MCM. This is not only useful for the management and mitigation of flood disasters, but is also beneficial to the protection of water resources across the MCM.展开更多
Using ground water vapor pressure and precipitation data at four times of one day during 1985- 2014 in each county( city) of Anyang,precipitable water at each station was calculated,and temporal-spatial distribution...Using ground water vapor pressure and precipitation data at four times of one day during 1985- 2014 in each county( city) of Anyang,precipitable water at each station was calculated,and temporal-spatial distribution of atmospheric maximum precipitable water and its change trend over the years in the city were analyzed. Results showed that atmospheric maximum precipitable water in Anyang City had the characteristics of summer far more than winter,autumn slightly higher than spring,west and south more,and east and north less,and presented the increasing trend year by year. We further analyzed the characteristic of monthly rainfall enhancement potential in each county,and mean in whole year was 80%. In spring and winter,rainfall enhancement potential in the west was bigger than east,while rainfall enhancement potential in the east was bigger than west in summer and autumn. The research provides reference basis for rationally carrying out artificial rainfall work,which could effectively ease uneven temporal-spatial distribution problem of water resource in Anyang City.展开更多
The precipitation behavior of topological close-packed(TCP)μphase in powder metallurgy(P/M)nickelbased superalloy FGH97 was investigated.The results showed that proper addition of solution strengthening elements,...The precipitation behavior of topological close-packed(TCP)μphase in powder metallurgy(P/M)nickelbased superalloy FGH97 was investigated.The results showed that proper addition of solution strengthening elements,such as Co,Cr,W,Mo,improved tensile strength,while excessive addition of those elements facilitated the precipitation ofμphase,which seriously aggravated the plasticity of the P/M superalloy.For the heat-treated specimens,the relationship between critical aging time(whenμstarted to precipitate),aging temperature,and the average electron vacancy number ofγmatrix was established.展开更多
The microstructure, hardness, and precipitate free zones(PFZ) of V55Ti30Ni15 alloys during heat treatment have been investigated in this study. The microstructure resulting from different heat treatment conditions h...The microstructure, hardness, and precipitate free zones(PFZ) of V55Ti30Ni15 alloys during heat treatment have been investigated in this study. The microstructure resulting from different heat treatment conditions has a great influence on hardness. The microstructure resulting from different heat treatment conditions has a great influence on hardness. Fine Ni Ti particles precipitate from the supersaturated V-matrix solid solution at 750 °C, increase in quantity until 800 °C, and then dissolve back into the V-matrix at 850 °C. The resultant hardness decreases with temperature until 800 °C, and then increases from 800 to 850 °C. The microstructure containing small Ni Ti precipitates resulting from the treatment of 18 h at800 °C has a good soft condition for workability. PFZ formed at the grain boundary of V-matrix during heat treatment was observed. Vacancies depletion in V-matrix maybe led to the formation of PFZ.展开更多
Hot strips of low carbon steels with Ti additive [-contain C 0.04 % -0. 07 % , Si≤0.6%, Mn≤0.6%, Ti 0. 060/00- 0.14% (mass percent)] prodvced by EAF-CSP (Electric Arc Furnaces-Compact Strip Production) process w...Hot strips of low carbon steels with Ti additive [-contain C 0.04 % -0. 07 % , Si≤0.6%, Mn≤0.6%, Ti 0. 060/00- 0.14% (mass percent)] prodvced by EAF-CSP (Electric Arc Furnaces-Compact Strip Production) process were examined by TEM, HREM and XRD. Carbonitrides with different N/C ratio were found in the sam- ples. The varying composition of the Ti-carbonitrides resulted from the supersaturation of Ti and temperature at which the compound was formed. In the tested steel, total mass fraction of the precipitates including cementite, carbonitride and a small quantity of Fe3O4, AO2O3 , Ti2 CS and A1N was about 0. 305 %. XRD results showed that about a quarter of the powder extracted by electrolysis was titanium nitrides, carbonitrides and carbides. Particle arrays formed by interphase precipitation could be observed either in slabs or in hot strips. The dominant reaction mecha- nisms were discussed. Compared with the conventional cold charge process, small amount of Ti addition would be more effective for orecipitation of fine orecioitates in the steels oroduced by CSP process.展开更多
The phase diagram of superaustenitic stainless steel 654SMO was calculated by thermodynamic software and the precipitated phases in the specimens aged at 800-1100°C for 1hwere studied by methods of physicochemica...The phase diagram of superaustenitic stainless steel 654SMO was calculated by thermodynamic software and the precipitated phases in the specimens aged at 800-1100°C for 1hwere studied by methods of physicochemical phase analysis,scanning electron microscopy and transmission electron microscopy.The results showed that the size of precipitated particles increased with increasing the temperature.The amount of second phases reached the maximum value at 900°C,but decreased above 900°C.There were about eight kinds of precipitated phases in 654SMO includingσphase,Cr_2N,μphase,χphase,Laves phase,M_(23)C_6,M_6C and M_3C,in which theσphase and Cr_2N were the dominant precipitated phases.展开更多
Understanding the impact of anthropogenic climate change on drought is of great significance to the prevention of its adverse effects.Two drought indices,standardized precipitation index(SPI)and standardized precipita...Understanding the impact of anthropogenic climate change on drought is of great significance to the prevention of its adverse effects.Two drought indices,standardized precipitation index(SPI)and standardized precipitation evapotranspiration index(SPEI),are used here for the detection and attribution of autumn droughts in China,and for the exploration of the role played by the anthropogenic climate change.SPI is only related to precipitation,but SPEI involves both precipitation and potential evapotranspiration.For their trend’s spatial patterns,the historical simulations(including all forcings,noted as ALL)from 11 models of the Coupled Model Intercomparison Project phase 6,as an ensemble,are able to reproduce their observational counterpart.SPI shows wetting trend in the north of 35°N and drying trend in the south.SPEI shows drying trend in almost whole China.The drying trend in historical simulations ALL is significantly stronger,compared with the counterpart from the accompanying simulations(called NAT)with only natural forcings implemented.This result clearly indicates that anthropogenic climate change plays a dominant role in the enhancement of autumn drought in China.A more rigorous detection work is also performed with the signal’s fingerprint of ALL(and NAT)projected onto the observation and assessed with the background noise from no external-forcing control simulations.The trend pattern signal in ALL is significantly detected in observation for both SPI and SPEI,with a more pronounced signal in SPEI than in SPI,while the signal of NAT is not detected for neither SPI nor SPEI.Finally,extreme droughts(with indices beyond-2)are assessed in terms of probability ratio between ALL and NAT.It is shown that the anthropogenic precipitation change plays a leading role in the south of 35°N,while the anthropogenic temperature change leads in the north.展开更多
基金financially supported by the National Natural Science Foundation of China (91644226)the National Key Research Project of China (2016YFA0602004)Industry of National Public Welfare (Meteorological) Scientific Research (GYHY201206004)
文摘Based on daily precipitation data from 163 meteorological stations, this study investigated precipitation changes in the mid-latitudes of the Chinese mainland(MCM) during 1960–2014 using the climatic trend coefficient, least-squared regression analysis, and a non-parametric Mann-Kendall test.According to the effects of the East Asian summer monsoon on the MCM and the climatic trend coefficient of annual precipitation during 1960–2014, we divided the MCM into the western MCM and eastern MCM. The western MCM was further divided into the western MCM1 and western MCM2 in terms of the effects of the East Asian summer monsoon. The main results were as follows:(1) During the last four decades of the 20^(th) century, the area-averaged annual precipitation presented a significant increasing trend in the western MCM, but there was a slight decreasing trend in the eastern MCM, where a seesaw pattern was apparent. However, in the 21^(st) century, the area-averaged annual precipitation displayed a significant increasing trend in both the western and eastern MCM.(2) The trend in area-averaged seasonal precipitation during 1960–2014 in the western MCM was consistent with that in the eastern MCM in winter and spring. However, the trend in area-averaged summer precipitation during1960–2014 displayed a seesaw pattern between the western and eastern MCM.(3) On an annual basis,both the trend in rainstorms and heavy rain displayed a seesaw pattern between the western and eastern MCM.(4) The precipitation intensity in rainstorms, heavy rain, and moderate rain made a greater contribution to changes in the total precipitation than precipitation frequency. The results of this study will improve our understanding of the trends and differences in precipitation changes in different areas of the MCM. This is not only useful for the management and mitigation of flood disasters, but is also beneficial to the protection of water resources across the MCM.
文摘Using ground water vapor pressure and precipitation data at four times of one day during 1985- 2014 in each county( city) of Anyang,precipitable water at each station was calculated,and temporal-spatial distribution of atmospheric maximum precipitable water and its change trend over the years in the city were analyzed. Results showed that atmospheric maximum precipitable water in Anyang City had the characteristics of summer far more than winter,autumn slightly higher than spring,west and south more,and east and north less,and presented the increasing trend year by year. We further analyzed the characteristic of monthly rainfall enhancement potential in each county,and mean in whole year was 80%. In spring and winter,rainfall enhancement potential in the west was bigger than east,while rainfall enhancement potential in the east was bigger than west in summer and autumn. The research provides reference basis for rationally carrying out artificial rainfall work,which could effectively ease uneven temporal-spatial distribution problem of water resource in Anyang City.
基金Item Sponsored by International Science and Technology Cooperation Program of China(2014DFR50330)
文摘The precipitation behavior of topological close-packed(TCP)μphase in powder metallurgy(P/M)nickelbased superalloy FGH97 was investigated.The results showed that proper addition of solution strengthening elements,such as Co,Cr,W,Mo,improved tensile strength,while excessive addition of those elements facilitated the precipitation ofμphase,which seriously aggravated the plasticity of the P/M superalloy.For the heat-treated specimens,the relationship between critical aging time(whenμstarted to precipitate),aging temperature,and the average electron vacancy number ofγmatrix was established.
基金China Scholarship Council for the financial support for Peng Jiang’s study at CSIRO
文摘The microstructure, hardness, and precipitate free zones(PFZ) of V55Ti30Ni15 alloys during heat treatment have been investigated in this study. The microstructure resulting from different heat treatment conditions has a great influence on hardness. The microstructure resulting from different heat treatment conditions has a great influence on hardness. Fine Ni Ti particles precipitate from the supersaturated V-matrix solid solution at 750 °C, increase in quantity until 800 °C, and then dissolve back into the V-matrix at 850 °C. The resultant hardness decreases with temperature until 800 °C, and then increases from 800 to 850 °C. The microstructure containing small Ni Ti precipitates resulting from the treatment of 18 h at800 °C has a good soft condition for workability. PFZ formed at the grain boundary of V-matrix during heat treatment was observed. Vacancies depletion in V-matrix maybe led to the formation of PFZ.
基金Item Sponsored by National Natural Science Foundation of China (50371009)
文摘Hot strips of low carbon steels with Ti additive [-contain C 0.04 % -0. 07 % , Si≤0.6%, Mn≤0.6%, Ti 0. 060/00- 0.14% (mass percent)] prodvced by EAF-CSP (Electric Arc Furnaces-Compact Strip Production) process were examined by TEM, HREM and XRD. Carbonitrides with different N/C ratio were found in the sam- ples. The varying composition of the Ti-carbonitrides resulted from the supersaturation of Ti and temperature at which the compound was formed. In the tested steel, total mass fraction of the precipitates including cementite, carbonitride and a small quantity of Fe3O4, AO2O3 , Ti2 CS and A1N was about 0. 305 %. XRD results showed that about a quarter of the powder extracted by electrolysis was titanium nitrides, carbonitrides and carbides. Particle arrays formed by interphase precipitation could be observed either in slabs or in hot strips. The dominant reaction mecha- nisms were discussed. Compared with the conventional cold charge process, small amount of Ti addition would be more effective for orecipitation of fine orecioitates in the steels oroduced by CSP process.
文摘The phase diagram of superaustenitic stainless steel 654SMO was calculated by thermodynamic software and the precipitated phases in the specimens aged at 800-1100°C for 1hwere studied by methods of physicochemical phase analysis,scanning electron microscopy and transmission electron microscopy.The results showed that the size of precipitated particles increased with increasing the temperature.The amount of second phases reached the maximum value at 900°C,but decreased above 900°C.There were about eight kinds of precipitated phases in 654SMO includingσphase,Cr_2N,μphase,χphase,Laves phase,M_(23)C_6,M_6C and M_3C,in which theσphase and Cr_2N were the dominant precipitated phases.
基金Supported by the National Key Research and Development Program of China(2018YFC1507704)。
文摘Understanding the impact of anthropogenic climate change on drought is of great significance to the prevention of its adverse effects.Two drought indices,standardized precipitation index(SPI)and standardized precipitation evapotranspiration index(SPEI),are used here for the detection and attribution of autumn droughts in China,and for the exploration of the role played by the anthropogenic climate change.SPI is only related to precipitation,but SPEI involves both precipitation and potential evapotranspiration.For their trend’s spatial patterns,the historical simulations(including all forcings,noted as ALL)from 11 models of the Coupled Model Intercomparison Project phase 6,as an ensemble,are able to reproduce their observational counterpart.SPI shows wetting trend in the north of 35°N and drying trend in the south.SPEI shows drying trend in almost whole China.The drying trend in historical simulations ALL is significantly stronger,compared with the counterpart from the accompanying simulations(called NAT)with only natural forcings implemented.This result clearly indicates that anthropogenic climate change plays a dominant role in the enhancement of autumn drought in China.A more rigorous detection work is also performed with the signal’s fingerprint of ALL(and NAT)projected onto the observation and assessed with the background noise from no external-forcing control simulations.The trend pattern signal in ALL is significantly detected in observation for both SPI and SPEI,with a more pronounced signal in SPEI than in SPI,while the signal of NAT is not detected for neither SPI nor SPEI.Finally,extreme droughts(with indices beyond-2)are assessed in terms of probability ratio between ALL and NAT.It is shown that the anthropogenic precipitation change plays a leading role in the south of 35°N,while the anthropogenic temperature change leads in the north.