Carbon Capture, Utilization and Storage (CCUS) has been regarded as an indispensable, strategic and pressing technology to reduce anthropogenic carbon dioxide emissions, and mitigate the severe consequences of climate...Carbon Capture, Utilization and Storage (CCUS) has been regarded as an indispensable, strategic and pressing technology to reduce anthropogenic carbon dioxide emissions, and mitigate the severe consequences of climate change. Its utilization and storage play important roles in this system and they can be applied for oceanic and underground geological sequestration especially for the oil gas reservoir that needs to improve recovery. For the carbon dioxide flooding process, the crude oil displacement generally shows a better performance with the increase of the pressure. However, carbon disposal is always complex. It could encounter organic solid phase precipitation and deposition in near miscibility environment. The law of multiphase and multicomponent diversification in the whole processes is still poorly understood. We thus used the method of slim tube to get dynamic data during the process. Indeed, the interval of near minimum miscibility pressure was determined. Analysis results of injectivity index and productivity index show that the reservoir blockage primarily appears as the displacement pressure is higher than the near minimum miscibility lower limit pressure and plays an important role in the production capacity. Extortionate or low pressure is not conducive to carbon dioxide displacement.展开更多
文摘Carbon Capture, Utilization and Storage (CCUS) has been regarded as an indispensable, strategic and pressing technology to reduce anthropogenic carbon dioxide emissions, and mitigate the severe consequences of climate change. Its utilization and storage play important roles in this system and they can be applied for oceanic and underground geological sequestration especially for the oil gas reservoir that needs to improve recovery. For the carbon dioxide flooding process, the crude oil displacement generally shows a better performance with the increase of the pressure. However, carbon disposal is always complex. It could encounter organic solid phase precipitation and deposition in near miscibility environment. The law of multiphase and multicomponent diversification in the whole processes is still poorly understood. We thus used the method of slim tube to get dynamic data during the process. Indeed, the interval of near minimum miscibility pressure was determined. Analysis results of injectivity index and productivity index show that the reservoir blockage primarily appears as the displacement pressure is higher than the near minimum miscibility lower limit pressure and plays an important role in the production capacity. Extortionate or low pressure is not conducive to carbon dioxide displacement.