The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calcul...The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calculated according to DSC curves using single heating rate method. The microstructures of as-rolled and peak-aged alloys were observed by transmission electron microscopy(TEM). The result shows that the age hardenability reduces and the activation energy rises with increasing the reduction from 7% to 40%. Nonuniform dislocations are found in as-rolled alloy and inhomogeneous distribution of θ′ phase is revealed in peak-aged alloy when the reduction is 15%. The inhomogeneous distribution of θ′ phase may be related to the age hardenability reducing and activation energy rising.展开更多
Thermal analysis is one of the most used techniques for analyzing the behavior of aluminum alloys in order to analyze the precipitation of Guinier-Preston(GP)zones and different phases formed.In the present work,the b...Thermal analysis is one of the most used techniques for analyzing the behavior of aluminum alloys in order to analyze the precipitation of Guinier-Preston(GP)zones and different phases formed.In the present work,the behavior of the Al-5.46wt.%Zn-1.67wt.%Mg alloy was studied.The mechanism and kinetics of precipitation of the GP,the metastable phaseη′and the equilibrium phaseηwere investigated using DSC carried out between room temperature and 480℃at heating rates of 5,10,15 and 20℃/min.The apparent activation energies,calculated by DSC from isothermal calculation method using JMAK model,for GP,η′andηwere 56,79 and 96 kJ/mol,respectively,and those calculated by non-isothermal calculation method using Kissinger methods were 57,82 and 99 kJ/mol,respectively.The values of Avrami parameter,n,from isothermal calculation,during the precipitation of the GP,η′andηwere 1.103,1.9075 and 1.92,respectively,and those calculated by non-isothermal were 0.86,2.30 and 2.24,respectively.The results show that GP zones formation is governed by the migration of Zn and Mg atoms while the precipitation of theη′metastable phase and theηstable phase is governed by both the migration and the diffusion of the solute atoms.展开更多
Further development of our differential scanning calorimetry(DSC)method for the analysis of solid-solid phase transformations now also allows for its application in the kinetic analysis of age hardening in Mg alloys.A...Further development of our differential scanning calorimetry(DSC)method for the analysis of solid-solid phase transformations now also allows for its application in the kinetic analysis of age hardening in Mg alloys.As a result,the state-of-the-art for DSC on Mg alloys has been improved with respect to the accessible temperature range,zero-level accuracy and dynamic range.DSC analysis was performed on the example of Mg wrought alloy WE43.Heating DSC experiments on the initial condition T4 and even direct continuous cooling DSC analysis on the kinetics of quench induced precipitation during cooling from solution treatment were possible,covering a dynamic range of 0.01-3 K/s.The DSC findings are discussed with respect to literature knowledge and scanning electron microscopy analysis of the defined heat treatment states.展开更多
The study aims at observation of precipitation distribution micrograph and analysis of forming kinetics mechanism of microstructure particles of Al-Si-Cu-Mg alloys. The microstructure morphology of some particles such...The study aims at observation of precipitation distribution micrograph and analysis of forming kinetics mechanism of microstructure particles of Al-Si-Cu-Mg alloys. The microstructure morphology of some particles such as primary silicon and precipitates from the matrix of Al-Si-Cu-Mg alloys is observed by OM,SEM and EDS. The primary silicon forming kinetics is analyzed by EBSD. Twin plane re-entrant edge growth mode results in the blocky or diamonded TRD morphology formation. The precipitates of Q-Al5Cu2Mg8Si6,θ-Al2Cu,β-Al5FeSi and ε-Mg2Si are characterized by EDS and they are distributed in the eutectic region. The forming kinetics of them is analyzed by DSC. Six peaks are present in particles formation in different temperature ranges.The particles forming are determined by the analysis of the DSC traces during heating and cooling of Al-Si-CuMg alloys.展开更多
基金Project(2012CB619500)supported by the National Basic Research Program of China
文摘The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calculated according to DSC curves using single heating rate method. The microstructures of as-rolled and peak-aged alloys were observed by transmission electron microscopy(TEM). The result shows that the age hardenability reduces and the activation energy rises with increasing the reduction from 7% to 40%. Nonuniform dislocations are found in as-rolled alloy and inhomogeneous distribution of θ′ phase is revealed in peak-aged alloy when the reduction is 15%. The inhomogeneous distribution of θ′ phase may be related to the age hardenability reducing and activation energy rising.
文摘Thermal analysis is one of the most used techniques for analyzing the behavior of aluminum alloys in order to analyze the precipitation of Guinier-Preston(GP)zones and different phases formed.In the present work,the behavior of the Al-5.46wt.%Zn-1.67wt.%Mg alloy was studied.The mechanism and kinetics of precipitation of the GP,the metastable phaseη′and the equilibrium phaseηwere investigated using DSC carried out between room temperature and 480℃at heating rates of 5,10,15 and 20℃/min.The apparent activation energies,calculated by DSC from isothermal calculation method using JMAK model,for GP,η′andηwere 56,79 and 96 kJ/mol,respectively,and those calculated by non-isothermal calculation method using Kissinger methods were 57,82 and 99 kJ/mol,respectively.The values of Avrami parameter,n,from isothermal calculation,during the precipitation of the GP,η′andηwere 1.103,1.9075 and 1.92,respectively,and those calculated by non-isothermal were 0.86,2.30 and 2.24,respectively.The results show that GP zones formation is governed by the migration of Zn and Mg atoms while the precipitation of theη′metastable phase and theηstable phase is governed by both the migration and the diffusion of the solute atoms.
基金Financial support by the Federal Ministry of Education and Research (BMBF) within RESPONSE “Partnership for Inno- vation in Implant Technology”(Grant Number 03ZZ0903I ) is gratefully acknowledged.
文摘Further development of our differential scanning calorimetry(DSC)method for the analysis of solid-solid phase transformations now also allows for its application in the kinetic analysis of age hardening in Mg alloys.As a result,the state-of-the-art for DSC on Mg alloys has been improved with respect to the accessible temperature range,zero-level accuracy and dynamic range.DSC analysis was performed on the example of Mg wrought alloy WE43.Heating DSC experiments on the initial condition T4 and even direct continuous cooling DSC analysis on the kinetics of quench induced precipitation during cooling from solution treatment were possible,covering a dynamic range of 0.01-3 K/s.The DSC findings are discussed with respect to literature knowledge and scanning electron microscopy analysis of the defined heat treatment states.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51372101 and U1134101)
文摘The study aims at observation of precipitation distribution micrograph and analysis of forming kinetics mechanism of microstructure particles of Al-Si-Cu-Mg alloys. The microstructure morphology of some particles such as primary silicon and precipitates from the matrix of Al-Si-Cu-Mg alloys is observed by OM,SEM and EDS. The primary silicon forming kinetics is analyzed by EBSD. Twin plane re-entrant edge growth mode results in the blocky or diamonded TRD morphology formation. The precipitates of Q-Al5Cu2Mg8Si6,θ-Al2Cu,β-Al5FeSi and ε-Mg2Si are characterized by EDS and they are distributed in the eutectic region. The forming kinetics of them is analyzed by DSC. Six peaks are present in particles formation in different temperature ranges.The particles forming are determined by the analysis of the DSC traces during heating and cooling of Al-Si-CuMg alloys.