This study investigates the possible causes for the precipitation of Guangdong during dragon-boat rain period(DBRP) in 2022 that is remarkably more than the climate state and reviews the successes and failures of the ...This study investigates the possible causes for the precipitation of Guangdong during dragon-boat rain period(DBRP) in 2022 that is remarkably more than the climate state and reviews the successes and failures of the prediction in2022. Features of atmospheric circulation and sea surface temperature(SST) are analyzed based on several observational datasets for nearly 60 years from meteorological stations and the NCEP/NCAR Global Reanalysis Data. Results show that fluctuation of the 200-h Pa westerly wind as well as the westerly jet is strengthened due to the propagation of wave energy, leading to strong updraft over southern China. Activities of a subtropical high and a shear line provide favorable conditions for the transport of moisture to Guangdong. With the support of powerful southwest winds, extreme precipitation is induced. ENSO is a good indicator of atmospheric circulation at mid-and high-levels during the DBRP in2022 but it performs badly at low levels. During recent years, the influence of ENSO on precipitation during the DBRP has decreased obviously. The SSTA of tropical southeast Atlantic(SEA) in spring may become the key indicator. During the years with warm SEA, wave trains propagate from northwest to southeast over Eurasia with energy enhancing the westerly jet, conducive to updraft over southern China and the occurrence of heavy precipitation. Meanwhile, the Rossby wave is triggered over Maritime Continent by heat sources of southern Atlantic-western Indian Ocean through the Gill response. Thus, strong transport of moisture and heavy rainfall occur.展开更多
Raindrop size distribution (RSD) characteristics over the South China Sea (SCS) are examined with onboard Parsivel disdrometer measurements collected during marine surveys from 2012 to 2016. The observed rainfall is d...Raindrop size distribution (RSD) characteristics over the South China Sea (SCS) are examined with onboard Parsivel disdrometer measurements collected during marine surveys from 2012 to 2016. The observed rainfall is divided into premonsoon, monsoon, and post-monsoon periods based on the different large-scale circumstances. In addition to disdrometer data, sounding observation, FY-2E satellite, SPRINTARS (Spectral Radiation-Transport Model for Aerosol Species), and NCEP reanalysis datasets are used to illustrate the dynamical and microphysical characteristics associated with the rainfall in different periods. Significant variations have been observed in respect of raindrops among the three periods. Intercomparison reveals that small drops (D < 1 mm) are prevalent during pre-monsoon precipitation, whereas medium drops (1?3 mm) are predominant in monsoon precipitation. Overall, the post-monsoon precipitation is characterized by the least concentration of raindrops among the three periods. But, several large raindrops could also occur due to severe convective precipitation events in this period. Classification of the precipitation into stratiform and convective regimes shows that the lg(Nw) value of convective rainfall is the largest (smallest) in the pre-monsoon (post-monsoon) period, whereas the Dm value is the smallest (largest) in the pre-monsoon (post-monsoon) period. An inversion relationship between the coefficient A and the exponential b of the Z?R relationships for precipitation during the three periods is found. Empirical relations between Dm and the radar reflectivity factors at Ku and Ka bands are also derived to improve the rainfall retrieval algorithms over the SCS. Furthermore, the possible causative mechanisms for the significant RSD variability in different periods are also discussed with respect to warm and cold rain processes, raindrop evaporation, convective activities, and other meteorological factors.展开更多
Periodical attenuation of particles,which interferes seriously the normal alumina production,exists in Bayer process.In order to solve this problem,the rule of periodical attenuation of Al(OH) 3 particles was investig...Periodical attenuation of particles,which interferes seriously the normal alumina production,exists in Bayer process.In order to solve this problem,the rule of periodical attenuation of Al(OH) 3 particles was investigated by laboratory experiments under simulated industrial conditions.The results show that at higher temperature the variation period of particle size is shortened,while prolongs with more solid content.Particle size fluctuation amplitude reduces with the temperature rising but increases with the solid content increasing.Particle size distribution becomes more uniform by replenishing fine seeds,enabling the periodical fluctuation of Al(OH)3 particle size to be attenuated.Combining properly the additives with controlling the seed size is able to reduce the amplitude of periodical fluctuation and shorten the attenuation time.With unbalance of particle size distribution,the particles gradually become bigger,even inducing the decrease of the specific surface area of seeds,which is the major reason causing explosive attenuation of Al(OH)3 particles in seed precipitation process.展开更多
[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method]...[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method] On the basis of rainfalls of each station in Huaihe River basin of Anhui,rainfall data during Meiyu period of 2007 and flood disaster data in the same period,the temporal and spatial distribution characteristics of strong precipitation caused flood during Meiyu period of 2007 and its harm on agriculture were analyzed.The variation rule,distribution characteristics of strong precipitation during Meiyu period in Huaihe River basin of Anhui and its relationship with agricultural disaster loss were discussed.[Result] During Meiyu period of 2007 in Huaihe River basin of Anhui,the rainstorm was more,and the rainfall was large.The precipitation variation showed 'three-peak' trend.Rainfall in Huaihe River basin during Meiyu period of 2007 was greatly more than that homochronously in Yangtze River basin.The rain area over 400.0 mm during Meiyu period mainly located in Huaihe River basin,and the rain area over 600.0 mm mainly located from area along Huaihe River to central Huaibei.The rainfall during Meiyu period gradually decreased toward south and north by the north bank of Huaihe River as the symmetry axis.The rainfall in area along Huaihe River showed wavy distribution in east-west direction.The flood disaster loss index and disaster area of crops in Huaihe River basin of Anhui both increased as rainfall in Meiyu period.[Conclusion] The research provided theoretical basis for flood prevention,disaster reduction and agricultural flood-avoiding development in Huaihe River basin.展开更多
[ Objective] The study aimed to discuss analyze climate change characteristics and return periods of heavy precipitation in the northeast side of Qinghai-Tibet Plateau. [ Method] Based on the data of daily precipitati...[ Objective] The study aimed to discuss analyze climate change characteristics and return periods of heavy precipitation in the northeast side of Qinghai-Tibet Plateau. [ Method] Based on the data of daily precipitation from 1943 to 2008 in 6 representative meteorological stations in Linxia located in the northeast side of Qinghai-Tibet Plateau, the climate change characteristics of heavy precipitation were analyzed, and the return periods of heavy precipitation were calculated by Pearson-Ill probability distribution method. [ Result] Days of heavy precipitation in Linxia region in- creased conspicuously since the 1990s. The return periods of heavy precipitation in the six stations on August 20, 2008 were consistent with the re- sults of artificial estimation. [ Conclusion] The research could provide scientific references for the reasonable utilization of climate resources, disas- ter prevention and rational arranqement of anricultural plantina svstems in Linxia reaion.展开更多
[Objective] The aim was to study change tendency of the precipitation resource during growth period of the conventional crops in plain area before Taihang Mountains. [ Method] Based on daily precipitation data at Shij...[Objective] The aim was to study change tendency of the precipitation resource during growth period of the conventional crops in plain area before Taihang Mountains. [ Method] Based on daily precipitation data at Shijiazhuang meteorological station in recent 51 years, average rainfall dudng growth periods of the 9 kinds of conventional crops was obtained. Precipitation tendency dudng growth periods of the 9 kinds of conventional crops in plain area before Taihang Mountains was analyzed by Mann-Kendall nonparametric test. [ Result] Seen from rainfall during growth pedods of the different crops, rainfall was the least during the growth period of winter wheat, followed by summer corn. Rainfall during growth peri- ods of the cotton, oil plant, vegetable, fruit tree, potato, rice and legumes was more. Under different guaranteed rates, precipitation change also had difference. Rainfall change during growth periods of the wheat and corn was bigger, and rainfall change during growth period of the rice was smaller. Change degree of the precipitation during growth periods of the cotton, oil plant, vegetable, fruit tree and legumes was equivalent, while precipitation change during growth period of the potato was the biggest. Seen from change tendency of the precipitation during growth periods of the different crops, precipitation in the growth period of winter wheat was increasing at a speed of 0.62 mm/a. However, precipitation in growth periods of the other crops had a decreasing tendency. Precipitation in the growth periods of summer corn and legumes decreased at the same speed which was 2.11 mm/a, while precipitation in growth periods of the cotton, oil plant, vegetable, fruit tree, potato and rice decreased insignificantly. [ Con dusion] The study laid foundation for determination of the agricultural irrigation water and provided theoretical reference for regional agricultural water-saving.展开更多
[ Objective] The aim was to study the available precipitation and its abnormal characteristics during the growth period of crops in the mid- dle and southern part of Ningxia. [ Methed] Through Takahashi's evaporation...[ Objective] The aim was to study the available precipitation and its abnormal characteristics during the growth period of crops in the mid- dle and southern part of Ningxia. [ Methed] Through Takahashi's evaporation equation, linear trend analysis, Mann -Kendall, Lepage, wavelet analysis, the characteristics of available precipitation and its abnormal characteristics during its growth period in Ningxia were analyzed based on monthly precipitation (March- September), temperature, and NCAR/NCEP reanalysis data in 9 observation stations from 1961 to 2010. E Result l In recent 50 years, the available precipitation during the growth period of crops in central drought area and south hilly area varied a lot, more in the south and less in the north. The available precipitation in these two areas was reducing and varied a lot in different ages. The available precipitation was less in the middle drought region after 1970s and in the southern hilly region after 1990s and the available precipitation in middle drought area changed significantly. The available precipitation in the two areas appeared in July, August, and September, above 76% of general growth period, while that in March, April and May was 14% lower than that in growth period. No abrupt changes in central drought area and south hilly area. There were the periods of 5 -7 a and 2 -3 a oscillations in the middle drought region, 2 -3 a and 10 -12 a oscillations in the southern hilly region. There were negative anomaly field at 500hPa height in high-precipitation years between the Baikal and the China's northwestern, and there were positive anomaly field in low-precipitation years. [ Cenclusion] The study provided reference for the reasonable utilization of available water resources in cen- tral and south Ningxia.展开更多
The early precipitation process of Ni(75)Al(14)Mo(11) alloy was simulated by microscopic phase-field model at different temperatures.The microstructure of the alloy,the precipitation time of Llo structure and oc...The early precipitation process of Ni(75)Al(14)Mo(11) alloy was simulated by microscopic phase-field model at different temperatures.The microstructure of the alloy,the precipitation time of Llo structure and occupation probability of the three kinds of atoms were investigated.It is indicated that the non-stoichiometric Ll0(Ⅰ/Ⅱ) phases are found in the precipitation process.With the temperature increasing,the appearance time of Ll0 is brought forward.The Ll0(Ⅱ) structure always precipitates earlier than the Ll0(Ⅰ) structure.Compared with lower temperature,higher temperature brings the formation time of Ll0 phase forward and makes Ll0 phase have a higher order degree.But lower temperature shortens the process time of the Ll0 phase to the Ll2 phase.Al and Mo atoms tend to occupy γ site,Ni atom tends to occupy a and β sites.At the same temperature,Al atom has stronger occupation ability than Mo atom in the same site.Ni,Al and Mo collectively form the composited Ll2 structure.展开更多
According to the precipitation sequence of Beijing City from 1900 to 1958,the precipitation sequence of Chengde City were revised and extended.Then the precipitation sequence of Chaoyang City were revised and extended...According to the precipitation sequence of Beijing City from 1900 to 1958,the precipitation sequence of Chengde City were revised and extended.Then the precipitation sequence of Chaoyang City were revised and extended with the precipitation sequence of Chengde City to form 100-years precipitation sequence of Chaoyang.The results showed that the 100-years precipitation sequence of Chaoyang indicated a decreasing trend and obvious periodic variation with the change of age.That is,a 10-year rainy period (approximately 525.0 mm) appeared every 30 a,while the 30-year drought period was approximately 460.0 mm,65.0 mm lower than the former.Moreover,an obviously heavy drought lasting for 2-4 a appeared every 20 a.展开更多
To understand the spatio-temporal variability of precipitation(P)in the Third Pole region(centered on the Tibetan Plateau-TP),it is necessary to quantify the interannual periodicity of P and its relationship with larg...To understand the spatio-temporal variability of precipitation(P)in the Third Pole region(centered on the Tibetan Plateau-TP),it is necessary to quantify the interannual periodicity of P and its relationship with large-scale circulations.In this study,Morlet wavelet transform was used to detect significant(p<0.05)periodic characteristics in P data from meteorological stations in four climate domains in the Third Pole,and to reveal the major large-scale circulations that triggered the variability of periodic P,in addition to bringing large amounts of water vapour.The wavelet transform results were as follows.(1)Significant quasiperiodicity varied from 2 to 11 years.The high-frequency variability mode(2 to 6 years quasi-periods)was universal,and the low-frequency variability mode(7 to 11 years quasi-periods)was rare,occurring mainly in the westerlies and Indian monsoon domains.(2)The majority of periods were base periods(53%),followed by two-base periods.Almost all stations in the Third Pole(95%)showed one or two periods.(3)Periodicity was widely detected in the majority of years(84%).(4)The power spectra of P in the four domains were dominated by statistically significant high-frequency oscillations(ie.,with short periodicity).(5)Large-scale circulations directly and indirectly influenced the periodic P variability in the different domains.The mode of P variability in the different domains was influenced by interactions between large-scale circulation features and not only by the dominant circulation and its control of water vapour transport.The results of this study will contribute to better understanding of the causal mechanisms associated with P variability,which is important for hydrological science and waterresourcemanagement.展开更多
Based on 740 stations of daily precipitation datasets in China, the precipitationconcentration degree (PCD) and precipitation-concentration period (PCP) of different intensity durative precipitation events were ca...Based on 740 stations of daily precipitation datasets in China, the precipitationconcentration degree (PCD) and precipitation-concentration period (PCP) of different intensity durative precipitation events were calculated to analyze their statistical characteristics, mainly including spatial and temporal distributions, variations and climatic trends of the two parameters of the durative heavy precipitation events in China. It is proved that these two parameters of heavy rainfall can display the temporal inhomogeneity in the precipitation field. And it is also found that there is a good positive relationship between the precipitation-concentration degree and annual rainfall amount in the Eastern and Central China. This method can be anolied in flood assessment and climate change fields.展开更多
The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations' data between 1950-2002 provided by National Meteorological A...The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations' data between 1950-2002 provided by National Meteorological Administration. Results reveal that: 1) Summer precipitation in the Yangtze river catchment shows significant increasing tendency. The Poyanghu lake basin, Dongtinghu lake basin and Taihu lake basin in the middle and lower reaches are the places showing significant positive trends. Summer precipitation in the middle and lower reaches experienced an abrupt change in the year 1992; 2) The monthly precipitation in months just adjoining to summer shows decreasing tendency in the Yangtze river catchment. The upper and middle reaches in Jialingjiang river basin and Hanshui river basin are the places showing significant negative trends; 3) Extreme precipitation events show an increasing tendency in most places, especially in the middle and lower reaches of the Yangtze river catchment.展开更多
The response of non-uniformity of precipitation extremes over China to doubled CO2has been analyzed using the daily precipitation simulated by a coupled general circulation model,MIROC_Hires.The major conclusions are ...The response of non-uniformity of precipitation extremes over China to doubled CO2has been analyzed using the daily precipitation simulated by a coupled general circulation model,MIROC_Hires.The major conclusions are as follows:under the CO2increasing scenario(SRES A1B),the climatological precipitation extremes are concentrated over the southern China,while they are uniformly distributed over the northern China.For interannual variability,the concentration of precipitation extremes is small over the southern China,but it is opposite over the northern China.The warming effects on the horizontal and vertical scales are different over the northern and southern part of China.Furthermore,the atmospheric stability is also different between the two parts of China.The heterogeneous warming is one of the possible reasons for the changes in non-uniformity of precipitation extremes over China.展开更多
The precipitate patterns were studied in rare earthcholate diffusion systems. The corresponding precipitates were characterized by Forie Transformed Infrared(FTIR) and Extended XRay Absorption Fine Structure(EXAFS) sp...The precipitate patterns were studied in rare earthcholate diffusion systems. The corresponding precipitates were characterized by Forie Transformed Infrared(FTIR) and Extended XRay Absorption Fine Structure(EXAFS) spectroscopy. The experimental results indicate that rare earth ions tend to produce periodic precipitation, and the pattern precipitates are just the corresponding rare earth cholate complexes.展开更多
Based on the daily precipitation data of 87 meteorological observation stations in Guangxi during 1961-2008,the variation characteristics of precipitation concentration degree(PCD) in Guangxi were counted and analyzed...Based on the daily precipitation data of 87 meteorological observation stations in Guangxi during 1961-2008,the variation characteristics of precipitation concentration degree(PCD) in Guangxi were counted and analyzed by using Monte Carlo test method.The results showed that the climate warming in most areas of Guangxi was very obvious,and the annual precipitation concentration degree increased gradually from the northeast to the southwest in Guangxi.The precipitation concentration period was from the middle of April to the end of August and delayed from the northeast to the southwest in Guangxi.In the background which the global climate became warm,the annual precipitation in most areas of Guangxi had the trend which the precipitation concentrated strengthening.It was said that the probability of flood disaster had the increase trend.The precipitation concentration period had the earlier trend,which was more obvious in the north than in the south of Guangxi.The rainstorm concentration degree in the northwest of Guangxi and few parts had the decrease trend and had the increase trend in other areas.It was said that the probabilities of flood and mud-rock flow disasters increased.The rainstorm concentration periods in most areas had the later trend.展开更多
The Tibetan Plateau(TP)is one of the most sensitive areas and is more susceptible to climate change than other regions in China.The TP also experiences extremely frequent light precipitation events compared to precipi...The Tibetan Plateau(TP)is one of the most sensitive areas and is more susceptible to climate change than other regions in China.The TP also experiences extremely frequent light precipitation events compared to precipitation of other intensities.However,the definition,influencing factors,and characteristics of light precipitation in the TP have not been accurately explained.This study investigated the variation characteristics of light precipitation with intensities(Pre)of 0.1-10.0 mm/d based on climate data from 53 meteorological stations over the central and eastern TP from 1961 to 2019.For detailed analysis,light precipitation events were classified into five grades:G1[0.1-2.0 mm/d),G2[2.0-4.0 mm/d),G3[4.0-6.0 mm/d),G4[6.0-8.0 mm/d),and G5[8.0-10.0 mm/d).The results showed that both the amount of precipitation and number of precipitation days had increased significantly at rates of 4.0-6.0 mm/10 yr and 2.0-4.0 d/10 yr,respectively,and most precipitation events were of low intensity(0.1≤Pre<2.0 mm/d).Light precipitation events mainly occurred in the southeast of the study area,and it showed an increasing trend from the northwest to the southeast.Abrupt changes in light precipitation primarily occurred in the 1980 s.A comprehensive time series analysis using the Mann-Kendall test and Morlet wavelet was performed to characterize the abrupt changes and cycles of light precipitation.During the study period,the main periods of light precipitation corresponded to the 6 yr cycle,with obvious periodic oscillation characteristics,and this cycle coexisted with cycles of other scales.Significant correlations were observed between the amount of light precipitation and temperature over the study area.The findings will enhance our understanding of changes in light precipitation in the TP and provide Scientific basis for the definition of light precipitation in the future.展开更多
Based on the daily precipitation data between 1965 and 2009 from 8 rainfall stations in Shaoguan City,the indexes of precipitation concentration degree( PCD) and precipitation concentration period( PCP) were calcu...Based on the daily precipitation data between 1965 and 2009 from 8 rainfall stations in Shaoguan City,the indexes of precipitation concentration degree( PCD) and precipitation concentration period( PCP) were calculated. And then inverse distance weighted( IDW) interpolation method was used to analyze the heterogeneous distribution characteristics of inter-annual precipitation by introducing the spatial distribution of annual mean values,variable coefficients,correlation coefficients with annual precipitation,change trends and composite analysis. The results showed that PCD was mainly decreasing from southeast to northwest in spatial distribution,long-term average annual values of PCP were distributed in the first ten days of June at most region. Annual precipitation increased as PCD increased in southern region,but the change trend was the opposite in northern region. Annual precipitation increased as PCP lagged in most region. PCD and PCP mainly appeared upward trend. Composite analysis of PCD in more-precipitation years was similar to less-precipitation years in spatial distribution,but the PCD in less-precipitation years was higher.Seen from the mean in the whole region,PCP in more-precipitation years lagged about 20 days behind those in less-precipitation years. The research can provide basis for the production of agriculture and industry as well as disaster prevention and reduction.展开更多
基金National Natural Science Foundation of China Meteorological Joint Fund(U2142205)National Key Research and Development Program of China(2018YFA0606203)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(2020B1212060025)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(311021001)。
文摘This study investigates the possible causes for the precipitation of Guangdong during dragon-boat rain period(DBRP) in 2022 that is remarkably more than the climate state and reviews the successes and failures of the prediction in2022. Features of atmospheric circulation and sea surface temperature(SST) are analyzed based on several observational datasets for nearly 60 years from meteorological stations and the NCEP/NCAR Global Reanalysis Data. Results show that fluctuation of the 200-h Pa westerly wind as well as the westerly jet is strengthened due to the propagation of wave energy, leading to strong updraft over southern China. Activities of a subtropical high and a shear line provide favorable conditions for the transport of moisture to Guangdong. With the support of powerful southwest winds, extreme precipitation is induced. ENSO is a good indicator of atmospheric circulation at mid-and high-levels during the DBRP in2022 but it performs badly at low levels. During recent years, the influence of ENSO on precipitation during the DBRP has decreased obviously. The SSTA of tropical southeast Atlantic(SEA) in spring may become the key indicator. During the years with warm SEA, wave trains propagate from northwest to southeast over Eurasia with energy enhancing the westerly jet, conducive to updraft over southern China and the occurrence of heavy precipitation. Meanwhile, the Rossby wave is triggered over Maritime Continent by heat sources of southern Atlantic-western Indian Ocean through the Gill response. Thus, strong transport of moisture and heavy rainfall occur.
基金primarily supported by the Chinese Beijige Open Research Fund for the Nanjing Joint Center of Atmospheric Research (Grant No. NJCAR 2018ZD03)the National Key Research and Development Program of China (2018YFC1507304)the National Natural Science Foundation of China (Grant Nos. 41575024 and 41865009)
文摘Raindrop size distribution (RSD) characteristics over the South China Sea (SCS) are examined with onboard Parsivel disdrometer measurements collected during marine surveys from 2012 to 2016. The observed rainfall is divided into premonsoon, monsoon, and post-monsoon periods based on the different large-scale circumstances. In addition to disdrometer data, sounding observation, FY-2E satellite, SPRINTARS (Spectral Radiation-Transport Model for Aerosol Species), and NCEP reanalysis datasets are used to illustrate the dynamical and microphysical characteristics associated with the rainfall in different periods. Significant variations have been observed in respect of raindrops among the three periods. Intercomparison reveals that small drops (D < 1 mm) are prevalent during pre-monsoon precipitation, whereas medium drops (1?3 mm) are predominant in monsoon precipitation. Overall, the post-monsoon precipitation is characterized by the least concentration of raindrops among the three periods. But, several large raindrops could also occur due to severe convective precipitation events in this period. Classification of the precipitation into stratiform and convective regimes shows that the lg(Nw) value of convective rainfall is the largest (smallest) in the pre-monsoon (post-monsoon) period, whereas the Dm value is the smallest (largest) in the pre-monsoon (post-monsoon) period. An inversion relationship between the coefficient A and the exponential b of the Z?R relationships for precipitation during the three periods is found. Empirical relations between Dm and the radar reflectivity factors at Ku and Ka bands are also derived to improve the rainfall retrieval algorithms over the SCS. Furthermore, the possible causative mechanisms for the significant RSD variability in different periods are also discussed with respect to warm and cold rain processes, raindrop evaporation, convective activities, and other meteorological factors.
基金Project(50804031) supported by the National Natural Science Foundation of China
文摘Periodical attenuation of particles,which interferes seriously the normal alumina production,exists in Bayer process.In order to solve this problem,the rule of periodical attenuation of Al(OH) 3 particles was investigated by laboratory experiments under simulated industrial conditions.The results show that at higher temperature the variation period of particle size is shortened,while prolongs with more solid content.Particle size fluctuation amplitude reduces with the temperature rising but increases with the solid content increasing.Particle size distribution becomes more uniform by replenishing fine seeds,enabling the periodical fluctuation of Al(OH)3 particle size to be attenuated.Combining properly the additives with controlling the seed size is able to reduce the amplitude of periodical fluctuation and shorten the attenuation time.With unbalance of particle size distribution,the particles gradually become bigger,even inducing the decrease of the specific surface area of seeds,which is the major reason causing explosive attenuation of Al(OH)3 particles in seed precipitation process.
基金Supported by Meteorological Open Research Fund of Huaihe River basin,China(HRM200805)Soft Science Research Plan of Ministry of Science and Technology,China(2007GXS3D087)
文摘[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method] On the basis of rainfalls of each station in Huaihe River basin of Anhui,rainfall data during Meiyu period of 2007 and flood disaster data in the same period,the temporal and spatial distribution characteristics of strong precipitation caused flood during Meiyu period of 2007 and its harm on agriculture were analyzed.The variation rule,distribution characteristics of strong precipitation during Meiyu period in Huaihe River basin of Anhui and its relationship with agricultural disaster loss were discussed.[Result] During Meiyu period of 2007 in Huaihe River basin of Anhui,the rainstorm was more,and the rainfall was large.The precipitation variation showed 'three-peak' trend.Rainfall in Huaihe River basin during Meiyu period of 2007 was greatly more than that homochronously in Yangtze River basin.The rain area over 400.0 mm during Meiyu period mainly located in Huaihe River basin,and the rain area over 600.0 mm mainly located from area along Huaihe River to central Huaibei.The rainfall during Meiyu period gradually decreased toward south and north by the north bank of Huaihe River as the symmetry axis.The rainfall in area along Huaihe River showed wavy distribution in east-west direction.The flood disaster loss index and disaster area of crops in Huaihe River basin of Anhui both increased as rainfall in Meiyu period.[Conclusion] The research provided theoretical basis for flood prevention,disaster reduction and agricultural flood-avoiding development in Huaihe River basin.
基金Supported by the Science and Technology Research Projects of Gansu Meteorological Bureau(2013-14)
文摘[ Objective] The study aimed to discuss analyze climate change characteristics and return periods of heavy precipitation in the northeast side of Qinghai-Tibet Plateau. [ Method] Based on the data of daily precipitation from 1943 to 2008 in 6 representative meteorological stations in Linxia located in the northeast side of Qinghai-Tibet Plateau, the climate change characteristics of heavy precipitation were analyzed, and the return periods of heavy precipitation were calculated by Pearson-Ill probability distribution method. [ Result] Days of heavy precipitation in Linxia region in- creased conspicuously since the 1990s. The return periods of heavy precipitation in the six stations on August 20, 2008 were consistent with the re- sults of artificial estimation. [ Conclusion] The research could provide scientific references for the reasonable utilization of climate resources, disas- ter prevention and rational arranqement of anricultural plantina svstems in Linxia reaion.
基金Supported by National Science and Technology Support Plan Item, China ( 2007BAD69B09)Soft Science Research Plan Project in Hebei Province,China (10457204D-30,114572124)
文摘[Objective] The aim was to study change tendency of the precipitation resource during growth period of the conventional crops in plain area before Taihang Mountains. [ Method] Based on daily precipitation data at Shijiazhuang meteorological station in recent 51 years, average rainfall dudng growth periods of the 9 kinds of conventional crops was obtained. Precipitation tendency dudng growth periods of the 9 kinds of conventional crops in plain area before Taihang Mountains was analyzed by Mann-Kendall nonparametric test. [ Result] Seen from rainfall during growth pedods of the different crops, rainfall was the least during the growth period of winter wheat, followed by summer corn. Rainfall during growth peri- ods of the cotton, oil plant, vegetable, fruit tree, potato, rice and legumes was more. Under different guaranteed rates, precipitation change also had difference. Rainfall change during growth periods of the wheat and corn was bigger, and rainfall change during growth period of the rice was smaller. Change degree of the precipitation during growth periods of the cotton, oil plant, vegetable, fruit tree and legumes was equivalent, while precipitation change during growth period of the potato was the biggest. Seen from change tendency of the precipitation during growth periods of the different crops, precipitation in the growth period of winter wheat was increasing at a speed of 0.62 mm/a. However, precipitation in growth periods of the other crops had a decreasing tendency. Precipitation in the growth periods of summer corn and legumes decreased at the same speed which was 2.11 mm/a, while precipitation in growth periods of the cotton, oil plant, vegetable, fruit tree, potato and rice decreased insignificantly. [ Con dusion] The study laid foundation for determination of the agricultural irrigation water and provided theoretical reference for regional agricultural water-saving.
基金Supported by National Natural Foundation Program (40965008 ) Special Foundation of Meteorology in China Meteorological Administration (CCSF2011-26)
文摘[ Objective] The aim was to study the available precipitation and its abnormal characteristics during the growth period of crops in the mid- dle and southern part of Ningxia. [ Methed] Through Takahashi's evaporation equation, linear trend analysis, Mann -Kendall, Lepage, wavelet analysis, the characteristics of available precipitation and its abnormal characteristics during its growth period in Ningxia were analyzed based on monthly precipitation (March- September), temperature, and NCAR/NCEP reanalysis data in 9 observation stations from 1961 to 2010. E Result l In recent 50 years, the available precipitation during the growth period of crops in central drought area and south hilly area varied a lot, more in the south and less in the north. The available precipitation in these two areas was reducing and varied a lot in different ages. The available precipitation was less in the middle drought region after 1970s and in the southern hilly region after 1990s and the available precipitation in middle drought area changed significantly. The available precipitation in the two areas appeared in July, August, and September, above 76% of general growth period, while that in March, April and May was 14% lower than that in growth period. No abrupt changes in central drought area and south hilly area. There were the periods of 5 -7 a and 2 -3 a oscillations in the middle drought region, 2 -3 a and 10 -12 a oscillations in the southern hilly region. There were negative anomaly field at 500hPa height in high-precipitation years between the Baikal and the China's northwestern, and there were positive anomaly field in low-precipitation years. [ Cenclusion] The study provided reference for the reasonable utilization of available water resources in cen- tral and south Ningxia.
基金Project(51275486)supported by the National Natural Science Foundation of China
文摘The early precipitation process of Ni(75)Al(14)Mo(11) alloy was simulated by microscopic phase-field model at different temperatures.The microstructure of the alloy,the precipitation time of Llo structure and occupation probability of the three kinds of atoms were investigated.It is indicated that the non-stoichiometric Ll0(Ⅰ/Ⅱ) phases are found in the precipitation process.With the temperature increasing,the appearance time of Ll0 is brought forward.The Ll0(Ⅱ) structure always precipitates earlier than the Ll0(Ⅰ) structure.Compared with lower temperature,higher temperature brings the formation time of Ll0 phase forward and makes Ll0 phase have a higher order degree.But lower temperature shortens the process time of the Ll0 phase to the Ll2 phase.Al and Mo atoms tend to occupy γ site,Ni atom tends to occupy a and β sites.At the same temperature,Al atom has stronger occupation ability than Mo atom in the same site.Ni,Al and Mo collectively form the composited Ll2 structure.
文摘According to the precipitation sequence of Beijing City from 1900 to 1958,the precipitation sequence of Chengde City were revised and extended.Then the precipitation sequence of Chaoyang City were revised and extended with the precipitation sequence of Chengde City to form 100-years precipitation sequence of Chaoyang.The results showed that the 100-years precipitation sequence of Chaoyang indicated a decreasing trend and obvious periodic variation with the change of age.That is,a 10-year rainy period (approximately 525.0 mm) appeared every 30 a,while the 30-year drought period was approximately 460.0 mm,65.0 mm lower than the former.Moreover,an obviously heavy drought lasting for 2-4 a appeared every 20 a.
基金National Natural Science Foundation of China,No.42271141,No.42071129National Key Basic Research and Development Project,No.2022YFF1300902。
文摘To understand the spatio-temporal variability of precipitation(P)in the Third Pole region(centered on the Tibetan Plateau-TP),it is necessary to quantify the interannual periodicity of P and its relationship with large-scale circulations.In this study,Morlet wavelet transform was used to detect significant(p<0.05)periodic characteristics in P data from meteorological stations in four climate domains in the Third Pole,and to reveal the major large-scale circulations that triggered the variability of periodic P,in addition to bringing large amounts of water vapour.The wavelet transform results were as follows.(1)Significant quasiperiodicity varied from 2 to 11 years.The high-frequency variability mode(2 to 6 years quasi-periods)was universal,and the low-frequency variability mode(7 to 11 years quasi-periods)was rare,occurring mainly in the westerlies and Indian monsoon domains.(2)The majority of periods were base periods(53%),followed by two-base periods.Almost all stations in the Third Pole(95%)showed one or two periods.(3)Periodicity was widely detected in the majority of years(84%).(4)The power spectra of P in the four domains were dominated by statistically significant high-frequency oscillations(ie.,with short periodicity).(5)Large-scale circulations directly and indirectly influenced the periodic P variability in the different domains.The mode of P variability in the different domains was influenced by interactions between large-scale circulation features and not only by the dominant circulation and its control of water vapour transport.The results of this study will contribute to better understanding of the causal mechanisms associated with P variability,which is important for hydrological science and waterresourcemanagement.
基金Concentrated fund item of nationalscience and technology foundation work,No.2001DEA30029-0604Jiangsunaturalsciencefoundation,No.BK2005163
文摘Based on 740 stations of daily precipitation datasets in China, the precipitationconcentration degree (PCD) and precipitation-concentration period (PCP) of different intensity durative precipitation events were calculated to analyze their statistical characteristics, mainly including spatial and temporal distributions, variations and climatic trends of the two parameters of the durative heavy precipitation events in China. It is proved that these two parameters of heavy rainfall can display the temporal inhomogeneity in the precipitation field. And it is also found that there is a good positive relationship between the precipitation-concentration degree and annual rainfall amount in the Eastern and Central China. This method can be anolied in flood assessment and climate change fields.
文摘The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations' data between 1950-2002 provided by National Meteorological Administration. Results reveal that: 1) Summer precipitation in the Yangtze river catchment shows significant increasing tendency. The Poyanghu lake basin, Dongtinghu lake basin and Taihu lake basin in the middle and lower reaches are the places showing significant positive trends. Summer precipitation in the middle and lower reaches experienced an abrupt change in the year 1992; 2) The monthly precipitation in months just adjoining to summer shows decreasing tendency in the Yangtze river catchment. The upper and middle reaches in Jialingjiang river basin and Hanshui river basin are the places showing significant negative trends; 3) Extreme precipitation events show an increasing tendency in most places, especially in the middle and lower reaches of the Yangtze river catchment.
基金National Basic Research Program of China(973 Program,2012CB955901)National Natural Science Foundation of China(51190090)+3 种基金National Natural Science Foundation of China(41105044,41205038)Open Project Program of State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment(SKLLQG1308)Key Laboratory of Meteorological Disaster of Ministry of Education,Nanjing University of Information Science and Technology(KLME1201)Fundamental Research Funds for the Central Universitites(2012B00114)
文摘The response of non-uniformity of precipitation extremes over China to doubled CO2has been analyzed using the daily precipitation simulated by a coupled general circulation model,MIROC_Hires.The major conclusions are as follows:under the CO2increasing scenario(SRES A1B),the climatological precipitation extremes are concentrated over the southern China,while they are uniformly distributed over the northern China.For interannual variability,the concentration of precipitation extremes is small over the southern China,but it is opposite over the northern China.The warming effects on the horizontal and vertical scales are different over the northern and southern part of China.Furthermore,the atmospheric stability is also different between the two parts of China.The heterogeneous warming is one of the possible reasons for the changes in non-uniformity of precipitation extremes over China.
文摘The precipitate patterns were studied in rare earthcholate diffusion systems. The corresponding precipitates were characterized by Forie Transformed Infrared(FTIR) and Extended XRay Absorption Fine Structure(EXAFS) spectroscopy. The experimental results indicate that rare earth ions tend to produce periodic precipitation, and the pattern precipitates are just the corresponding rare earth cholate complexes.
基金Supported by The Youth Project of Science Fund in Guangxi (0991060)The Meteorological Science Research Fund Project of Tropical Ocean(200804)The Special Project Fund of Climate Change in China Meteorological Administration(CCSF-09-03)
文摘Based on the daily precipitation data of 87 meteorological observation stations in Guangxi during 1961-2008,the variation characteristics of precipitation concentration degree(PCD) in Guangxi were counted and analyzed by using Monte Carlo test method.The results showed that the climate warming in most areas of Guangxi was very obvious,and the annual precipitation concentration degree increased gradually from the northeast to the southwest in Guangxi.The precipitation concentration period was from the middle of April to the end of August and delayed from the northeast to the southwest in Guangxi.In the background which the global climate became warm,the annual precipitation in most areas of Guangxi had the trend which the precipitation concentrated strengthening.It was said that the probability of flood disaster had the increase trend.The precipitation concentration period had the earlier trend,which was more obvious in the north than in the south of Guangxi.The rainstorm concentration degree in the northwest of Guangxi and few parts had the decrease trend and had the increase trend in other areas.It was said that the probabilities of flood and mud-rock flow disasters increased.The rainstorm concentration periods in most areas had the later trend.
基金Under the auspices of the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK040)Key Technologies Research and Development Program of Shaanxi Province(No.2021ZDLSF05-02)+2 种基金The National Natural Science Foundation of China(No.42072208,42101100,41901129)The Fundamental Research Funds for the Central Universities(No.GK202001003)Natural Science Foundation of Shaanxi Province(No.2021JQ-313)。
文摘The Tibetan Plateau(TP)is one of the most sensitive areas and is more susceptible to climate change than other regions in China.The TP also experiences extremely frequent light precipitation events compared to precipitation of other intensities.However,the definition,influencing factors,and characteristics of light precipitation in the TP have not been accurately explained.This study investigated the variation characteristics of light precipitation with intensities(Pre)of 0.1-10.0 mm/d based on climate data from 53 meteorological stations over the central and eastern TP from 1961 to 2019.For detailed analysis,light precipitation events were classified into five grades:G1[0.1-2.0 mm/d),G2[2.0-4.0 mm/d),G3[4.0-6.0 mm/d),G4[6.0-8.0 mm/d),and G5[8.0-10.0 mm/d).The results showed that both the amount of precipitation and number of precipitation days had increased significantly at rates of 4.0-6.0 mm/10 yr and 2.0-4.0 d/10 yr,respectively,and most precipitation events were of low intensity(0.1≤Pre<2.0 mm/d).Light precipitation events mainly occurred in the southeast of the study area,and it showed an increasing trend from the northwest to the southeast.Abrupt changes in light precipitation primarily occurred in the 1980 s.A comprehensive time series analysis using the Mann-Kendall test and Morlet wavelet was performed to characterize the abrupt changes and cycles of light precipitation.During the study period,the main periods of light precipitation corresponded to the 6 yr cycle,with obvious periodic oscillation characteristics,and this cycle coexisted with cycles of other scales.Significant correlations were observed between the amount of light precipitation and temperature over the study area.The findings will enhance our understanding of changes in light precipitation in the TP and provide Scientific basis for the definition of light precipitation in the future.
基金Supported by the National Natural Science Fund of China(41371498,31170486,41571091)Youth Fund of Humanistic and Social Sciences of the Ministry of Education of PRC in 2017(17YJCZH114)the"13th Five-year"Planning Item of Guangdong Philosophy and Social Sciences(GD16CGL10)
文摘Based on the daily precipitation data between 1965 and 2009 from 8 rainfall stations in Shaoguan City,the indexes of precipitation concentration degree( PCD) and precipitation concentration period( PCP) were calculated. And then inverse distance weighted( IDW) interpolation method was used to analyze the heterogeneous distribution characteristics of inter-annual precipitation by introducing the spatial distribution of annual mean values,variable coefficients,correlation coefficients with annual precipitation,change trends and composite analysis. The results showed that PCD was mainly decreasing from southeast to northwest in spatial distribution,long-term average annual values of PCP were distributed in the first ten days of June at most region. Annual precipitation increased as PCD increased in southern region,but the change trend was the opposite in northern region. Annual precipitation increased as PCP lagged in most region. PCD and PCP mainly appeared upward trend. Composite analysis of PCD in more-precipitation years was similar to less-precipitation years in spatial distribution,but the PCD in less-precipitation years was higher.Seen from the mean in the whole region,PCP in more-precipitation years lagged about 20 days behind those in less-precipitation years. The research can provide basis for the production of agriculture and industry as well as disaster prevention and reduction.