期刊文献+
共找到1,068篇文章
< 1 2 54 >
每页显示 20 50 100
Time-lagged Effects of the Spring Atmospheric Heat Source over the Tibetan Plateau on Summer Precipitation in Northeast China during 1961–2020:Role of Soil Moisture 被引量:1
1
作者 Yizhe HAN Dabang JIANG +2 位作者 Dong SI Yaoming MA Weiqiang MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1527-1538,共12页
The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N... The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC. 展开更多
关键词 Tibetan plateau atmospheric heat source Northeast China summer precipitation soil moisture
下载PDF
A New Algorithm of Rain Type Classification for GPM Dual-Frequency Precipitation Radar in Summer Tibetan Plateau
2
作者 Yunfei FU Liu YANG +4 位作者 Zhenhao WU Peng ZHANG Songyan GU Lin CHEN Sun NAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2093-2111,共19页
In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2... In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2 data in summer from 2014 to 2020. It was found that the DPR rain type classification algorithm(simply called DPR algorithm) has mis-identification problems in two aspects in summer TP. In the new algorithm of rain type classification in summer TP,four rain types are classified by using new thresholds, such as the maximum reflectivity factor, the difference between the maximum reflectivity factor and the background maximum reflectivity factor, and the echo top height. In the threshold of the maximum reflectivity factors, 30 d BZ and 18 d BZ are both thresholds to separate strong convective precipitation, weak convective precipitation and weak precipitation. The results illustrate obvious differences of radar reflectivity factor and vertical velocity among the three rain types in summer TP, such as the reflectivity factor of most strong convective precipitation distributes from 15 d BZ to near 35 d BZ from 4 km to 13 km, and increases almost linearly with the decrease in height. For most weak convective precipitation, the reflectivity factor distributes from 15 d BZ to 28 d BZ with the height from 4 km to 9 km. For weak precipitation, the reflectivity factor mainly distributes in range of 15–25 d BZ with height within 4–10 km. It is also shows that weak precipitation is the dominant rain type in summer TP, accounting for 40%–80%,followed by weak convective precipitation(25%–40%), and strong convective precipitation has the least proportion(less than 30%). 展开更多
关键词 satellite precipitation radar rain type classification method Tibetan plateau strong convective precipitation
下载PDF
Mechanism of Diabatic Heating on Precipitation and the Track of a Tibetan Plateau Vortex over the Eastern Slope of the Tibetan Plateau
3
作者 Yuanchang DONG Guoping LI +3 位作者 Xiaolin XIE Long YANG Peiwen ZHANG Bo ZENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期155-172,共18页
Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).How... Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).However,in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH)conditions rapidly change.How LH gradually replaces SH to become the dominant factor in the development of the TPV over the ESTP is still not very clear.In this paper,an analysis of a typical case of a TPV with a long life history over the ESTP is performed by using multi-sourced meteorological data and model simulations.The results show that SH from the TP surface can change the TPV-associated precipitation distribution by temperature advection after the TPV moves off the TP.The LH can then directly promote the development of the TPV and has a certain guiding effect on the track of the TPV.The SH can control the active area of LH by changing the falling area of the TPV-associated precipitation,so it still plays a key role in the development and tracking of the TPV even though it has moved out of the main body of the TP. 展开更多
关键词 eastern slope of the Tibetan plateau diabatic heating Tibetan plateau vortex precipitation distribution TRACK
下载PDF
Quantifying Contribution of Recycled Moisture to Precipitation in Temperate Glacier Region,Southeastern Tibetan Plateau,China
4
作者 MA Yanwei PU Tao +2 位作者 SHI Xiaoyi MA Xinggang YU Hongmei 《Chinese Geographical Science》 SCIE CSCD 2024年第4期764-776,共13页
Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is t... Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is the closest ocean glacier area to the equator in Eurasia.Daily precipitation samples were collected from 2017 to 2018 in Lijiang to quantify the effect of sub-cloud evaporation and recycled moisture on precipitation combined with the d-excess model during monsoon and non-monsoon periods.The results indicated that the d-excess values of precipitation fluctuated between–35.6‰and 16.0‰,with an arithmetic mean of 3.5‰.The local meteoric water line(LMWL)wasδD=7.91δ^(18)O+2.50,with a slope slightly lower than the global meteoric water line(GMWL).Subcloud evaporation was higher during the non-monsoon season than during the monsoon season.It tended to peak in March and was primarily influenced by the relative humidity.The source of the water vapour affected the proportion of recycled moisture.According to the results of the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,the main sources of water vapour in Lijiang area during the monsoon period were the southwest and southeast monsoons.During the non-monsoon period,water vapour was transported by a southwesterly flow.The recycled moisture in Lijiang area between March and October 2017 was 10.62%.Large variations were observed between the monsoon and non-monsoon seasons,with values of 5.48%and 25.65%,respectively.These differences were primarily attributed to variations in the advection of water vapour.The recycled moisture has played a supplementary role in the precipitation of Lijiang area. 展开更多
关键词 recycled moisture stable isotope precipitation d-excess Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model southeastern Tibetan plateau China
下载PDF
Multi-decadal Changes of the Impact of El Niño Events on Tibetan Plateau Summer Precipitation
5
作者 Weinan Jiang Ning Cao +1 位作者 Riga Aze Jianjun Xu 《Journal of Atmospheric Science Research》 2024年第1期90-105,共16页
Precipitation on the Tibetan Plateau(TP)has an important effect on the water supply and demand of the downstream population.Involving recent climate change,the multi-decadal variations of the impact of El Niño-So... Precipitation on the Tibetan Plateau(TP)has an important effect on the water supply and demand of the downstream population.Involving recent climate change,the multi-decadal variations of the impact of El Niño-Southern Oscillation(ENSO)events on regional climate were observed.In this work,the authors investigated the changes in summer precipitation over TP during 1950-2019.At the multi-decadal scale,the authors found that the inhabiting impact of El Niño events on the TP summer precipitation has strengthened since the late 1970s.The main factor contributing to this phenomenon is the significant amplification in the decadal amplitude of El Niño during 1978-2019 accompanied by a discernible escalation in the frequency of El Niño events.This phenomenon induces anomalous perturbations in sea surface temperatures(SST)within the tropical Indo-Pacific region,consequently weakening the atmospheric vapor transport from the western Pacific to the TP.Additionally,conspicuous anomalies in subsidence motion are observed longitudinally and latitudinally across the TP which significantly contributes to a curtailed supply of atmospheric moisture.These results bear profound implications for the multi-decadal prediction of the TP climate. 展开更多
关键词 Tibetan plateau Summer precipitation ENSO Multi-decadal changes Climate variability
下载PDF
A Precursory Signal of June-July Precipitation over the Yangtze River Basin: December-January Tropospheric Temperature over the Tibetan Plateau 被引量:1
6
作者 Xiaying ZHU Mingzhu YANG +4 位作者 Ge LIU Yanju LIU Weijing LI Sulan NAN Linhai SUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第11期1986-1997,共12页
The prediction of summer precipitation over the Yangtze River basin(YRB)has long been challenging,especially during June-July(JJ),when the mei-yu generally occurs.This study explores the potential signal for the YRB p... The prediction of summer precipitation over the Yangtze River basin(YRB)has long been challenging,especially during June-July(JJ),when the mei-yu generally occurs.This study explores the potential signal for the YRB precipitation in JJ and reveals that the Tibetan Plateau tropospheric temperature(TPTT)in the middle and upper levels during the preceding December-January(DJ)is significantly correlated with JJ YRB precipitation.The close connection between the DJ TPTT anomaly with JJ YRB precipitation may be due to the joint modulation of the DJ ENSO and spring TP soil temperatures.The lagged response to an anomalously cold TPTT during the preceding DJ is a TPTT that is still anomalously cold during the following JJ.The lower TPTT can lead to an anomalous anticyclone to the east of Lake Baikal,an anomalous cyclone at the middle latitudes of East Asia,and an anomalous anticyclone over the western North Pacific.Meanwhile,the East Asian westerly jet shifts southward in response to the meridional thermal gradient caused by the colder troposphere extending from the TP to the east of Lake Baikal.The above-mentioned circulation anomalies constitute the positive anomaly of the East Asia-Pacific pattern,known to be conducive to more precipitation over the YRB.Since the DJ TPTT contains both the land(TP soil temperature)and ocean(ENSO)signals,it has a closer relationship with the JJ precipitation over the YRB than the DJ ENSO alone.Therefore,the preceding DJ TPTT can be considered an alternative predictor of the JJ YRB precipitation. 展开更多
关键词 Tibetan plateau thermal condition Yangtze River precipitation prediction
下载PDF
Effects of surface heating on precipitation over the Tibetan Plateau and its eastern margin 被引量:1
7
作者 MaoShan Li YuChen Liu +4 位作者 Zhao Lv YongHao Jiang Pei Xu YaoMing Ma FangLin Sun 《Research in Cold and Arid Regions》 CSCD 2023年第5期230-238,共9页
The high terrain of the Tibetan Plateau(TP)has a very important impact on the weather and climate of China,East Asia,South Asia,and even the Northern Hemisphere.However,in recent years,the reasons for the decrease in ... The high terrain of the Tibetan Plateau(TP)has a very important impact on the weather and climate of China,East Asia,South Asia,and even the Northern Hemisphere.However,in recent years,the reasons for the decrease in precipitation in the southeastern edge of the plateau have resulted in cutting-edge research regarding the impact of the TP and its surrounding areas on downstream weather and climate.In this study,the spatial and temporal distribution of surface heat flux and precipitation were analyzed from 1998 to 2022,and the possible mechanism of the decrease of precipitation in the eastern edge of the plateau is explored.The main conclusions are as follows:The annual average sensible heat flux in the TP and its east side is positive,with an average of 33.73 W/m^(2).The annual average latent heat flux is positive,with an average of 42.71 W/m^(2).Precipitation has a similar annual average and seasonal distribution,with modest amounts in the northwest and substantial amounts in the southeast.The average annual accumulated precipitation is 670.69 mm.The first mode of the Empirical Orthogonal Function(EOF)shows that sensible heat flux decreases first,then increases,and then finally decreases during 1998–2022.The modes show the opposite trend in middle part of the plateau.The latent heat flux initially decreases,then increases,and finally decreases in the western plateau and near Sichuan Basin.The mode,however,displays the opposite tendency throughout the rest of the region.The precipitation in the north and south sides of the plateau has decreased since 2013,which is consistent with the changing trend of sensible heat flux.In the rest of the region,the change trend is not obvious.The sensible heat of the main body of the plateau and its east side and Sichuan Basin is negatively correlated with precipitation,that is,when sensible heat flux of the main body of the plateau and its east side and Sichuan Basin is more(less),local precipitation is less(more).The latent heat of the main body of the plateau and its east side,Sichuan Basin is positively correlated with precipitation,indicating that when latent heat flux of the main body of the plateau and its east side,Sichuan Basin is more(less),local precipitation is more(less). 展开更多
关键词 The Tibetan plateau Surface heating precipitation EOF Singular value decomposition(SVD)
下载PDF
Temporal and spatial variation characteristics of extreme precipitation on the Loess Plateau of China facing the precipitation process
8
作者 ZHANG Yixin LI Peng +5 位作者 XU Guoce MIN Zhiqiang LI Qingshun LI Zhanbin WANG Bin CHEN Yiting 《Journal of Arid Land》 SCIE CSCD 2023年第4期439-459,共21页
The preceding and succeeding precipitation(PSP)often act together with extreme precipitation(EP),in turn,causing floods,which is an objective component that is often overlooked with regard to summer flood hazards in t... The preceding and succeeding precipitation(PSP)often act together with extreme precipitation(EP),in turn,causing floods,which is an objective component that is often overlooked with regard to summer flood hazards in the arid region of Northwest China.In this study,event-based extreme precipitation(EEP)was defined as continuous precipitation that includes at least one day of EP.We analyzed the spatiotemporal variation characteristics of four EEP types(front EEP,late EEP,balanced EEP,and single day EEP)across the Loess Plateau(LP)based on data acquired from 87 meteorological stations from 1960 to 2019.Precipitation on the LP basically maintained a spatial pattern of"low in the northwest region and high in the southeast region",and EP over the last 10 a increased significantly.The cumulative precipitation percentage of single day EEP was 34%and was dominant for 60 a,while the cumulative precipitation percentage of front,late,and balanced EEP types associated with PSP accounted for 66%,which confirms to the connotation of EEP.The cumulative frequencies of front and late EEP types were 23%and 21%,respectively,while the cumulative frequency of balanced EEP had the lowest value at only 13%.Moreover,global warming could lead to more single day EEP across the LP,and continuous EEP could increase in the northwestern region and decrease in the eastern region in the future.The concept of process-oriented EP could facilitate further exploration of disaster-causing processes associated with different types of EP,and provide a theoretical basis for deriving precipitation disaster chains and construction of disaster cluster characteristics. 展开更多
关键词 temporal and spatial variation climate change extreme precipitation(EP) event-based extreme precipitation(EEP) Loess plateau
下载PDF
Evaluation of Performance of Polar WRF Model in Simulating Precipitation over Qinghai-Tibet Plateau
9
作者 薛建军 肖子牛 《Journal of Tropical Meteorology》 SCIE 2023年第4期410-430,共21页
Considering the complex topographic forcing and large cryosphere concentration,the present study utilized the polar-optimized WRF model(Polar WRF)to conduct downscaling simulations over the Qinghai-Tibet Plateau(TP)an... Considering the complex topographic forcing and large cryosphere concentration,the present study utilized the polar-optimized WRF model(Polar WRF)to conduct downscaling simulations over the Qinghai-Tibet Plateau(TP)and its surrounding regions.Multi-group experiments with the 10 km horizontal resolution are used to evaluate the modeling of precipitation.Firstly,on the basis of the model ground surface properties upgrade and the optimized Noah-MP,the“better-performing”configuration suite for modeling precipitation is comprehensively examined.Various model parameters such as nudging options,five cumulus parameterization schemes,two planetary boundary layer schemes,and six microphysics schemes are investigated to further refine the Polar WRF configuration.Moreover,the precipitation simulation for a full calendar year is compared with multiple reanalyses and observations.The simulations demonstrate that the Polar WRF model successfully captures the general features of precipitation over this region and is sensitive to model parameters.Based on the results,it is recommended to use grid nudging with q intensity coefficient of 0.0002,the multi-scale kain-fritsch cumulus parameterization,the Yonsei University boundary layer scheme,and the Morrison 2-mom microphysics with reduced default droplet concentration value of 100 cm-3.Overall,the model performance is better than the ERA-interim and TRMM 3b42.It is comparable to,and in some cases slightly better than,the CRA-Land,especially in the prediction for the western part of the plateau where in situ observations are limited,and the cryosphere-atmosphere interaction is more pronounced. 展开更多
关键词 Polar WRF precipitation Qinghai-Tibet plateau downscaling simulations parameter optimization
下载PDF
Contribution of external forcing to summer precipitation trends over the Qinghai-Tibet Plateau and Southwest China
10
作者 Yuying Xiang Tao Wang +1 位作者 Hongna Xu Huijun Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第5期29-34,共6页
在过去的60年中,全球气候经历了快速变暖和短暂的变暖停滞,而中国的区域降水也经历了多样而复杂的变化.本文分析了1961年至2014年外强迫因子对青藏高原和中国西南地区夏季降水趋势的影响.观测数据显示,青藏高原的夏季降水呈增加趋势,而... 在过去的60年中,全球气候经历了快速变暖和短暂的变暖停滞,而中国的区域降水也经历了多样而复杂的变化.本文分析了1961年至2014年外强迫因子对青藏高原和中国西南地区夏季降水趋势的影响.观测数据显示,青藏高原的夏季降水呈增加趋势,而中国西南地区的夏季降水呈减少趋势,这两个相邻地区的夏季降水变化趋势相反.利用CMIP6数据,本文研究了不同外强迫因子对两个区域夏季降水趋势的影响.结果表明,温室气体对青藏高原夏季降水的增加具有显著影响,而气溶胶在中国西南地区夏季降水减少中起主要作用。 展开更多
关键词 夏季降水 青藏高原 中国西南 CMIP6 外强迫因子
下载PDF
Ground-Based Atmospheric CO_(2),CH_(4),and CO Column Measurements at Golmud in the Qinghai-Tibetan Plateau and Comparisons with TROPOMI/S5P Satellite Observations 被引量:2
11
作者 Minqiang ZHOU Qichen NI +7 位作者 Zhaonan CAI Bavo LANGEROCK Jingyi JIANG Ke CHE Jiaxin WANG Weidong NAN Yi LIU Pucai WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第2期223-234,共12页
Measurements of carbon dioxide(CO_(2)),methane(CH_(4)),and carbon monoxide(CO)are of great importance in the Qinghai-Tibetan region,as it is the highest and largest plateau in the world affecting global weather and cl... Measurements of carbon dioxide(CO_(2)),methane(CH_(4)),and carbon monoxide(CO)are of great importance in the Qinghai-Tibetan region,as it is the highest and largest plateau in the world affecting global weather and climate systems.In this study,for the first time,we present CO_(2),CH_(4),and CO column measurements carried out by a Bruker EM27/SUN Fourier-transform infrared spectrometer(FTIR)at Golmud(36.42°E,94.91°N,2808 m)in August 2021.The mean and standard deviation of the column-average dry-air mixing ratio of CO_(2),CH_(4),and CO(XCO_(2),XCH_(4),and XCO)are 409.3±0.4 ppm,1905.5±19.4 ppb,and 103.1±7.7 ppb,respectively.The differences between the FTIR co-located TROPOMI/S5P satellite measurements at Golmud are 0.68±0.64%(13.1±12.2 ppb)for XCH_(4) and 9.81±3.48%(–10.7±3.8 ppb)for XCO,which are within their retrieval uncertainties.High correlations for both XCH_(4) and XCO are observed between the FTIR and S5P satellite measurements.Using the FLEXPART model and satellite measurements,we find that enhanced CH_(4) and CO columns in Golmud are affected by anthropogenic emissions transported from North India.This study provides an insight into the variations of the CO_(2),CH_(4),and CO columns in the Qinghai-Tibetan Plateau. 展开更多
关键词 Ground-based FTIR greenhouse gas remote sensing TROPOMI/S5P qinghai-tibetan plateau
下载PDF
The relationship between NDVI and precipitation on the Tibetan Plateau 被引量:48
12
作者 DING Mingjun ZHANG Yili LIU Linshan ZHANG Wei WANG Zhaofeng BAI Wanqi 《Journal of Geographical Sciences》 SCIE CSCD 2007年第3期259-268,共10页
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data f... The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre- lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi- cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area. 展开更多
关键词 Tibetan plateau land cover change NDVI precipitation CORRELATION
下载PDF
The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu–Baiu region 被引量:15
13
作者 LIU Ge WU Renguang +1 位作者 ZHANG Yuanzhi NAN Sulan 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第4期755-764,共10页
The summer snow anomalies over the Tibetan Plateau (TP) and their effects on climate variability are often overlooked,possibly due to the fact that some datasets cannot properly capture summer snow cover over high t... The summer snow anomalies over the Tibetan Plateau (TP) and their effects on climate variability are often overlooked,possibly due to the fact that some datasets cannot properly capture summer snow cover over high terrain.The satellite-derived Equal-Area Scalable Earth grid (EASE-grid) dataset shows that snow still exists in summer in the western part and along the southem flank of the TP.Analysis demonstrates that the summer snow cover area proportion (SCAP) over the TP has a significant positive correlation with simultaneous precipitation over the mei-yu-baiu (MB) region on the interannual time scale.The close relationship between the summer SCAP and summer precipitation over the MB region could not be simply considered as a simultaneous response to the Silk Road pattern and the SST anomalies in the tropical Indian Ocean and tropical central-eastern Pacific.The SCAP anomaly has an independent effect and may directly modulate the land surface heating and,consequently,vertical motion over the western TP,and concurrently induce anomalous vertical motion over the North Indian Ocean via a meridional vertical circulation.Through a zonal vertical circulation over the tropics and a Kelvin wave-type response,anomalous vertical motion over the North Indian Ocean may result in an anomalous high over the western North Pacific and modulate the convective activity in the western Pacific warm pool,which stimulates the East Asia-Pacific (EAP) pattern and eventually affects summer precipitation over the MB region. 展开更多
关键词 snow cover Tibetan plateau MEI-YU baiu precipitation
下载PDF
Spatiotemporal variability of precipitation during 1961-2014 across the Mongolian Plateau 被引量:11
14
作者 QIN Fu-ying JIA Gen-suo +3 位作者 YANG Jie NA Yin-tai HOU Mei-ting Narenmandula 《Journal of Mountain Science》 SCIE CSCD 2018年第5期992-1005,共14页
Precipitation is the dominant factor that controls vegetation growth and land-use practices in the arid and semiarid Mongolian Plateau(MP), so the spatiotemporal heterogeneity of precipitation change has been an impor... Precipitation is the dominant factor that controls vegetation growth and land-use practices in the arid and semiarid Mongolian Plateau(MP), so the spatiotemporal heterogeneity of precipitation change has been an important scientific question in the region. This study investigated the spatiotemporal characteristics of annual and seasonal precipitation across the entire MP based on monthly precipitation data from 136 meteorological stations during 1961–2014 by using a modified Mann–Kendall test, Sen's slope, Morlet Wavelet Transform, and geostatistical methods. Results show the following: 1) Annual precipitation decreased slightly from 1961 to 2014.Stations with positive and negative trends were 41.9%and 58.1%, respectively. Significant positive trends were mainly in the southwestern and northeastern regions of the plateau, whereas significant negative trends were in the northern and southeastern regions.2) Precipitation decreased at rates of-5.65 and-0.41 mm/decade in summer and autumn, respectively, but increased at 1.91 and 0.51 mm/decade in spring and winter. The contribution of spring and winter precipitation to the annual amount increased significantly, but that of summer precipitation decreased significantly. 3) A large majority of stations(80.2%) showed decreasing trends in summer,whereas 89.7% and 83.1% of stations showed increasing trends in spring and winter. The spatial distribution of trend magnitude in seasonal precipitation amount was strongly heterogeneous. 4)By climatic zones, precipitation increased in humid and arid zones, but decreased in a semiarid zone. On the whole, the MP experienced a drying trend, with significant regional differentiation and seasonal variations. 展开更多
关键词 precipitation INTERANNUAL trends SEASONAL variability SPATIOTEMPORAL characteristics MONGOLIAN plateau
下载PDF
Thermal dynamics of the permafrost active layer under increased precipitation at the Qinghai-Tibet Plateau 被引量:9
15
作者 LI De-sheng WEN Zhi +3 位作者 CHENG Qian-gong XING Ai-guo ZHANG Ming-li LI An-yuan 《Journal of Mountain Science》 SCIE CSCD 2019年第2期309-322,共14页
Precipitation has a significant influence on the hydro-thermal state of the active layer in permafrost regions, which disturbs the surface energy balance, carbon flux, ecosystem, hydrological cycles and landscape proc... Precipitation has a significant influence on the hydro-thermal state of the active layer in permafrost regions, which disturbs the surface energy balance, carbon flux, ecosystem, hydrological cycles and landscape processes. To better understand the hydro-thermal dynamics of active layer and the interactions between rainfall and permafrost, we applied the coupled heat and mass transfer model for soil-plant-atmosphere system into high-altitude permafrost regions in this study. Meteorological data, soil temperature, heat flux and moisture content from different depths within the active layer were used to calibrate and validate this model. Thereafter, the precipitation was increased to explore the effect of recent climatic wetting on the thermal state of the active layer. The primary results demonstrate that the variation of active layer thickness under the effect of short-term increased precipitation is not obvious, while soil surface heat flux can show the changing trends of thermal state in active layer, which should not be negligible. An increment in year-round precipitation leads to a cooling effect on active layers in the frozen season, i.e. verifying the insulating effect of "snow cover". However, in the thawed season, the increased precipitation created a heating effect on active layers, i.e. facilitating the degradation of permafrost. The soil thermal dynamic in single precipitation event reveals that the precipitation event seems to cool the active layer, while compared with the results under increased precipitation, climatic wetting trend has a different influence on the permafrost evolution. 展开更多
关键词 Active layer precipitation Qinghai-Tibet plateau Hydro-thermal dynamic
下载PDF
Cluster analysis on summer precipitation field over Qinghai-Tibet Plateau from 1961 to 2004 被引量:7
16
作者 LU Heli SHAO Quanqin +3 位作者 LIU Jiyuan WANG Junbang CHEN Shenbin CHEN Zhuoqi 《Journal of Geographical Sciences》 SCIE CSCD 2008年第3期295-307,共13页
The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai-Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial distribution through accumulated variance,correlation... The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai-Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial distribution through accumulated variance,correlation analysis,regression analysis,empirical orthogonal function,power spectrum function and spatial analysis tools of GIS.The result showed that summer precipitation occupied a relatively high proportion in the area with less annual precipitation on the Plateau and the correlation between summer precipitation and annual precipitation was strong.The altitude of these stations and summer precipitation tendency presented stronger positive correlation below 2000 m,with correlation value up to 0.604(α=0.01).The subtracting tendency values between 1961-1983 and 1984-2004 at five altitude ranges(2000-2500 m,2500-3000 m,3500-4000 m,4000-4500 m and above 4500 m)were above zero and accounted for 71.4%of the total.Using empirical orthogonal function, summer precipitation could be roughly divided into three precipitation pattern fields:the Southeast Plateau Pattern Field,the Northeast Plateau Pattern field and the Three Rivers' Headstream Regions Pattern Field.The former two ones had a reverse value from the north to the south and opposite line was along 35°N.The potential cycles of the three pattern fields were 5.33a,21.33a and 2.17a respectively,tested by the confidence probability of 90%.The station altitudes and summer precipitation potential cycles presented strong negative correlation in the stations above 4500 m,with correlation value of-0.626(α=0.01).In Three Rivers Headstream Regions summer precipitation cycle decreased as the altitude rose in the stations above 3500 m and increased as the altitude rose in those below 3500 m.The empirical orthogonal function analysis in June precipitation,July precipitation and August precipitation showed that the June precipitation pattern field was similar to the July's,in which southern Plateau was positive and northern Plateau negative.But positive value area in July precipitation pattern field was obviously less than June's.The August pattern field was totally opposite to June's and July's.The positive area in August pattern field jumped from the southern Plateau to the northern Plateau. 展开更多
关键词 Qinghai-Tibet plateau summer precipitation cluster analysis precipitation pattern field precipitation cycle
下载PDF
Impact of the Anomalous Thawing in the Tibetan Plateau on Summer Precipitation in China and Its Mechanism 被引量:11
17
作者 高荣 韦志刚 +1 位作者 董文杰 钟海玲 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第2期238-245,共8页
The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorol... The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorological stations in the Tibetan Plateau, and the NCEP/NCAR monthly average reanalysis data. Results show that the thawing dates of the Tibetan Plateau gradually become earlier from 1980 to 1999, which is consistent with the trend of global warming in the 20th century. Because differences in the thermal capacity and conductivity between frozen and unfrozen soils are larger, changes in the freezing/thawing process of soil may change the physical properties of the underlying surface, thus affecting exchanges of sensible and latent heat between the ground surface and air. The thermal state change of the plateau ground surface must lead to the thermal anomalies of the atmosphere over and around the plateau, and then further to the anomalies of the general atmospheric circulation. A possible mechanism for the impact of the thawing of the plateau on summer (July) precipitation may be as follows. When the frozen soil thaws early (late) in the plateau, the thermal capacity of the ground surface is large (small), and the thermal conductivity is small (large), therefore, the thermal exchanges between the ground surface and the air are weak (strong). The small (large) ground surface sensible and latent heat fluxes lead to a weak (strong) South Asian high, a weak (strong) West Pacific subtropical high and a little to south (north) of its normal position. Correspondingly, the ascending motion is strengthened (weakened) and precipitation increases (decreases) in South China, while in the middle and lower reaches of the Changjiang River, the ascending motion and precipitation show the opposite trend. 展开更多
关键词 Tibetan plateau thawing of frozen soil summer precipitation
下载PDF
Properties of Cloud and Precipitation over the Tibetan Plateau 被引量:7
18
作者 WANG Chenghai SHI Hongxia +2 位作者 HU Haolin WANG Yi XI Baike 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第11期1504-1516,共13页
The characteristics of seasonal precipitation over the Tibetan Plateau (TP) were investigated using TRMM (Tropical Rain- fall Measuring Mission) precipitation data (3B43). Sensitive regions of summer precipitati... The characteristics of seasonal precipitation over the Tibetan Plateau (TP) were investigated using TRMM (Tropical Rain- fall Measuring Mission) precipitation data (3B43). Sensitive regions of summer precipitation interannual variation anomalies were investigated using EOF (empirical orthogonal function) analysis. Furthermore, the profiles of cloud water content (CWC) and precipitable water in different regions and seasons were analyzed using TRMM-3A12 data observed by the TRMM Microwave Imager. Good agreement was found between hydrometeors and precipitation over the eastern and southeastern TP, where water vapor is adequate, while the water vapor amount is not significant over the western and northern TE Further analysis showed meridional and zonal anomalies of CWC centers in the ascending branch of the Hadley and Walker Circulation, especially over the south and east of the TE The interannual variation of hydrometeors over the past decade showed a decrease over the southeastern and northwestern TP, along with a corresponding increase over other regions. 展开更多
关键词 cloud liquid water content cloud ice water content precipitable liquid water Tibetan plateau
下载PDF
Structural Variation of an Atmospheric Heat Source over the Qinghai-Xizang Plateau and Its Influence on Precipitation in Northwest China 被引量:8
19
作者 魏娜 巩远发 何金海 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第5期1027-1041,共15页
NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its s... NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its surrounding area and precipitation in northwest China. Our main conclusions are as follows: (1) The horizontal distribution of 〈 Q1 〉 and its changing trend are dramatic over QXP in the summer. There are three strong centers of 〈 Q1 〉 over the south side of QXP with obvious differences in the amount of yearly precipitation and the number of heat sinks predominate in the arid and semi-arid regions of northwest China (NWC), beside the northern QXP with an obvious higher intensity in years with less precipitation. (2) In the summer, the variation of the heat source's vertical structure is obviously different between greater and lesser precipitation years in eastern northwest China (ENWC). The narrow heat sink belt forms between the northeast QXP and the southwestern part of Lake Baikal. In July and August of greater precipitation years, the heating center of the eastern QXP stays nearly over 35°N, and at 400 hPa of the eastern QXP, the strong upward motion of the heating center constructs a closed secondary vertical circulation cell over the northeast QXP (40~ 46~N), which is propitious to add precipitation over the ENWC. Otherwise, the heating center shifts to the south of 30°N and disappears in July and August of lesser precipitation years, an opposite secondary circulation cell forms over the northeast QXP, which is a disadvantage for precipitation. Meanwhile, the secondary circulation cell in years with more or less precipitation over the ENWC is also related to the heat source over the Lake Baikal. (3) The vertical structure of the heat source over the western QXP has obvious differences between greater and lesser precipitation years in western northwest China in June and July. The strong/weak heat source over the western QXP produces relatively strong/weak ascending motion and correspondingly constructs a secondary circulation cell in lesser/greater precipitation years. 展开更多
关键词 Qinghai-Xizang plateau atmospheric heat source/sink greater/lesser precipitation years northwest China
下载PDF
Persistence of Snow Cover Anomalies over the Tibetan Plateau and the Implications for Forecasting Summer Precipitation over the Meiyu-Baiu Region 被引量:7
20
作者 LIU Ge WU Ren-Guang ZHANG Yuan-Zhi 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第2期115-119,共5页
The present reported study investigated the persistence of snow anomalies over the Tibetan Plateau(TP) from the preceding seasons to summer and the relationship between the previous snow cover anomaly and summer preci... The present reported study investigated the persistence of snow anomalies over the Tibetan Plateau(TP) from the preceding seasons to summer and the relationship between the previous snow cover anomaly and summer precipitation over East Asia. The results showed that, relative to other snow indices, such as the station observational snow depth(SOSD) index and the snow water equivalent(SWE) index, the snow cover area proportion(SCAP) index calculated from the SWE and the percentage of visible snow of the Equal-Area Scalable Earth Grids(EASE-grids) dataset has a higher persistence in interannual anomalies, particularly from May to summer. As such, the May SCAP index is significantly related to summer precipitation over the Meiyu-Baiu region. The persistence of the SCAP index can partly explain the season-delayed effect of snow cover over the TP on summer rainfall over the Meiyu-Baiu region besides the contribution of the soil moisture bridge. The preceding SST anomaly in the tropical Indian Ocean and ENSO can persist through the summer and affect the summer precipitation over the Meiyu-Baiu region. However, the May SCAP index is mostly independent of the simultaneous SSTs in the tropical Indian Ocean and the preceding ENSO and may affect the summer precipitation over the Meiyu-Baiu region independent of the effects of the SST anomalies. Therefore, the May SCAP over the TP could be regarded as an important supplementary factor in the forecasting of summer precipitation over the Meiyu-Baiu region. 展开更多
关键词 snow cover Tibetan plateau MEIYU precipitation forecast
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部