Simulating the typical carbonation step in a mineral CO_2 sequestration, precipitated calcium carbonate(PCC) was prepared by bubbling CO_2 gas into a rich Ca solution. These carbonation reactions were conducted at thr...Simulating the typical carbonation step in a mineral CO_2 sequestration, precipitated calcium carbonate(PCC) was prepared by bubbling CO_2 gas into a rich Ca solution. These carbonation reactions were conducted at three p H ranges, namely 10.0–9.0, 9.0–8.0, and 8.0–7.0, in which temperature and CO_2 flow rate are additional experimental variables. The PCC obtained in experiments was examined by Fourier transform infrared spectroscopy(FTIR)and X-ray diffraction(XRD). It was found that supersaturation determined by p H value and flow rate of CO_2 has significant influence on polymorph of PCC. Vaterite was preferably formed at high supersaturation, while dissolution of metastable vaterite and crystallization of calcite occurred at low supersaturation. High temperature is a critical factor for the formation of aragonite. At 70 °C, vaterite, calcite and aragonite were observed to coexist in PCC because transformation from vaterite to aragonite via calcite occurred at this temperature. Scanning electron microscopy(SEM) technology was performed on prepared PCC, and various morphologies consistent with polymorphs were observed.展开更多
The stress corrosion cracking( SCC) behavior of PH13-8Mo precipitation hardening stainless steel( PHSS) in neutral NaCl solutions was investigated through slow-strain-rate tensile( SSRT) test at various applied ...The stress corrosion cracking( SCC) behavior of PH13-8Mo precipitation hardening stainless steel( PHSS) in neutral NaCl solutions was investigated through slow-strain-rate tensile( SSRT) test at various applied potentials. Fracture morphology,elongation ratio,and percentage reduction of area were measured to evaluate the SCC susceptibility. A critical concentration of 1. 0 mol / L neutral NaCl existed for SCC of PH13-8Mo steel. Significant SCC emerged when the applied potential was more negative than -0. 15 VSCE,and the SCC behavior was controlled by an anodic dissolution( AD) process.When the applied potential was lower than -0. 55 VSCE,an obvious hydrogen-fracture morphology was observed,which indicated that the SCC behavior was controlled by hydrogen-induced cracking( HIC).Between -0. 15 and -0. 35 VSCE,the applied potential exceeded the equilibrium hydrogen evolution potential in neutral NaCl solutions and the crack tips were of electrochemical origin in the anodic region; thus,the SCC process was dominated by the AD mechanism.展开更多
Based on the theory of pH evolution of sea water and the balance between the seawater and the atmosphere the authors discussed the problems about (i) the method ofcalculating P_(CO_2) in the ancient atmosphere with th...Based on the theory of pH evolution of sea water and the balance between the seawater and the atmosphere the authors discussed the problems about (i) the method ofcalculating P_(CO_2) in the ancient atmosphere with the associations of sedimentary miner-als; (ii) the evolution of P_(CO_2) values in the geologic history; (iii) the relations of thepH evolution of sea water with carbonate precipitations; and (iv) calculation of the pHlimit for some associations of sedimentary minerals and its corresponding P_(CO_2) valuesin the atmosphere. The authors pointed out that though carbonates had deposited little in the Archaean,the content of CO_2 gas in the Archaean atmosphere was very high and was gradually go-ing up to form a thick CO_2 atmosphere. Up to 2600 Ma ago, the P_(CO_2) had reached a gradeof 10- 50 atm. There was a general trend of evolution that from the early Proterozoicera to the present the depositional horizon of carbonate layers was gradually risingand finally surpassed the horizons of clay minerals and sulfides. The corresponding P_(CO_2)in the atmosphere was lowering from the thick CO_2 atmosphere to the present 0.03%atm. On the basis of the calculated P_(CO_2) sizes and its fluctuation characteristics thehistory of P_(CO_2) evolution can be divided into three major stages.展开更多
基金Supported by the National Natural Science Foundation of China(41471412)
文摘Simulating the typical carbonation step in a mineral CO_2 sequestration, precipitated calcium carbonate(PCC) was prepared by bubbling CO_2 gas into a rich Ca solution. These carbonation reactions were conducted at three p H ranges, namely 10.0–9.0, 9.0–8.0, and 8.0–7.0, in which temperature and CO_2 flow rate are additional experimental variables. The PCC obtained in experiments was examined by Fourier transform infrared spectroscopy(FTIR)and X-ray diffraction(XRD). It was found that supersaturation determined by p H value and flow rate of CO_2 has significant influence on polymorph of PCC. Vaterite was preferably formed at high supersaturation, while dissolution of metastable vaterite and crystallization of calcite occurred at low supersaturation. High temperature is a critical factor for the formation of aragonite. At 70 °C, vaterite, calcite and aragonite were observed to coexist in PCC because transformation from vaterite to aragonite via calcite occurred at this temperature. Scanning electron microscopy(SEM) technology was performed on prepared PCC, and various morphologies consistent with polymorphs were observed.
基金supported by the National Natural Science Foundation of China(No.51171023)the Fundamental Research Funds for the Central Universities(No.FRF-TP-14-011C1)+1 种基金National Basic Research Program of China(973 Program )(No.2014CB643300 )the Beijing Municipal Commission of Education
文摘The stress corrosion cracking( SCC) behavior of PH13-8Mo precipitation hardening stainless steel( PHSS) in neutral NaCl solutions was investigated through slow-strain-rate tensile( SSRT) test at various applied potentials. Fracture morphology,elongation ratio,and percentage reduction of area were measured to evaluate the SCC susceptibility. A critical concentration of 1. 0 mol / L neutral NaCl existed for SCC of PH13-8Mo steel. Significant SCC emerged when the applied potential was more negative than -0. 15 VSCE,and the SCC behavior was controlled by an anodic dissolution( AD) process.When the applied potential was lower than -0. 55 VSCE,an obvious hydrogen-fracture morphology was observed,which indicated that the SCC behavior was controlled by hydrogen-induced cracking( HIC).Between -0. 15 and -0. 35 VSCE,the applied potential exceeded the equilibrium hydrogen evolution potential in neutral NaCl solutions and the crack tips were of electrochemical origin in the anodic region; thus,the SCC process was dominated by the AD mechanism.
文摘Based on the theory of pH evolution of sea water and the balance between the seawater and the atmosphere the authors discussed the problems about (i) the method ofcalculating P_(CO_2) in the ancient atmosphere with the associations of sedimentary miner-als; (ii) the evolution of P_(CO_2) values in the geologic history; (iii) the relations of thepH evolution of sea water with carbonate precipitations; and (iv) calculation of the pHlimit for some associations of sedimentary minerals and its corresponding P_(CO_2) valuesin the atmosphere. The authors pointed out that though carbonates had deposited little in the Archaean,the content of CO_2 gas in the Archaean atmosphere was very high and was gradually go-ing up to form a thick CO_2 atmosphere. Up to 2600 Ma ago, the P_(CO_2) had reached a gradeof 10- 50 atm. There was a general trend of evolution that from the early Proterozoicera to the present the depositional horizon of carbonate layers was gradually risingand finally surpassed the horizons of clay minerals and sulfides. The corresponding P_(CO_2)in the atmosphere was lowering from the thick CO_2 atmosphere to the present 0.03%atm. On the basis of the calculated P_(CO_2) sizes and its fluctuation characteristics thehistory of P_(CO_2) evolution can be divided into three major stages.