Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes(BMSs),the Thompson and the Chen-Liu-Reisner(CLR),using the Weather Research and Forecast(WRF)model.The objective of this study ...Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes(BMSs),the Thompson and the Chen-Liu-Reisner(CLR),using the Weather Research and Forecast(WRF)model.The objective of this study is to investigate the parameterizations of aerosol effects on cloud and precipitation characteristics and assess the necessity of introducing aerosols into a weather prediction model at fine grid resolution.The results show that aerosols play a decisive role in the composition of clouds in terms of the mixing ratios and number concentrations of liquid and ice hydrometeors in an intense supercell storm.The storm consists of a large amount of cloud water and snow in the polluted environment,but a large amount of rainwater and graupel instead in the clean environment.The total precipitation and rain intensity are suppressed in the CLR scheme more than in the Thompson scheme in the first three hours of storm simulations.The critical processes explaining the differences are the auto-conversion rate in the warm-rain process at the beginning of storm intensification and the low-level cooling induced by large ice hydrometeors.The cloud condensation nuclei(CCN)activation and auto-conversion processes of the two schemes exhibit considerable differences,indicating the inherent uncertainty of the parameterized aerosol effects among different BMSs.Beyond the aerosol effects,the fall speed characteristics of graupel in the two schemes play an important role in the storm dynamics and precipitation via low-level cooling.The rapid intensification of storms simulated with the Thompson scheme is attributed to the production of hail-like graupel.展开更多
The effects of the physical process ensemble technique on simulation of summer precipitation over China have been studied by using a p-σregional climate model with 9 vertical levels(pσ-RCM9).The results show that ...The effects of the physical process ensemble technique on simulation of summer precipitation over China have been studied by using a p-σregional climate model with 9 vertical levels(pσ-RCM9).The results show that there are obvious differences among simulations of summer precipitation over China from different individual ensemble members.The simulated precipitation over China is sensitive to different cumulus convection,radiative transfer,and land surface process parameterizations.These differences lead to large uncertainties in the simulation results.The standard deviation of the simulated summer precipitation departure percentage over West China is larger than that over East China,signifying that the simulated precipitation over East China has higher reliability and consistency than that over West China.The Talagr and diagram shows that the ensemble system has reasonable dispersion in the simulated summer mean precipitation over East China.The summer ensemble mean precipitation over East China evaluated by various indices is better than most single simulations.The physical process ensemble technique reduces the uncertainties of the model physics in precipitation and improves the simulation results as a whole.Further, adopting the optimized ensemble mean method can obviously improve the performance of the pσ-RCM9 model in simulation of summer precipitation over East China.展开更多
An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed.This study shows that such a simulation may be operated in real-time to highlight tho...An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed.This study shows that such a simulation may be operated in real-time to highlight those areas that are highly prone to rainfall-induced landslides on the basis of the landslide susceptibility index and the rainfall intensity-duration(I-D) thresholds.First,the study on landslide susceptibility in China is introduced.The entire territory has been classified into five categories,among which high-susceptibility regions(Zone 4-'High' and 5-'Very high') account for 4.15%of the total extension of China.Second,rainfall is considered as an external triggering factor that may induce landslide initiation.Real-time satellite-based TMPA3B42 products may provide real rainfall spatial and temporal patterns,which may be used to derive rainfall duration time and intensity.By using a historical record of 60 significant past landslides,the rainfall I-D equation has been calibrated.The rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours.The combination of these two aspects can be exploited to simulate the spatiotemporal distribution of rainfall-induced landslide hazards when rainfall events exceed the rainfall I-D thresholds,where the susceptibility category is 'high' or 'very high'.This study shows a useful tool to be part of a systematic landslide simulation methodology,potentially providing useful information for a theoretical basis and practical guide for landslide prediction and mitigation throughout China.展开更多
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFE0109700 and 2017YFC150190X)Research Program from Science and Technology Committee of Shanghai(Grant No.19dz1200101)National Science Foundation of China(Grant Nos.41575101 and 41975133)。
文摘Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes(BMSs),the Thompson and the Chen-Liu-Reisner(CLR),using the Weather Research and Forecast(WRF)model.The objective of this study is to investigate the parameterizations of aerosol effects on cloud and precipitation characteristics and assess the necessity of introducing aerosols into a weather prediction model at fine grid resolution.The results show that aerosols play a decisive role in the composition of clouds in terms of the mixing ratios and number concentrations of liquid and ice hydrometeors in an intense supercell storm.The storm consists of a large amount of cloud water and snow in the polluted environment,but a large amount of rainwater and graupel instead in the clean environment.The total precipitation and rain intensity are suppressed in the CLR scheme more than in the Thompson scheme in the first three hours of storm simulations.The critical processes explaining the differences are the auto-conversion rate in the warm-rain process at the beginning of storm intensification and the low-level cooling induced by large ice hydrometeors.The cloud condensation nuclei(CCN)activation and auto-conversion processes of the two schemes exhibit considerable differences,indicating the inherent uncertainty of the parameterized aerosol effects among different BMSs.Beyond the aerosol effects,the fall speed characteristics of graupel in the two schemes play an important role in the storm dynamics and precipitation via low-level cooling.The rapid intensification of storms simulated with the Thompson scheme is attributed to the production of hail-like graupel.
基金the National Natural Science Foundation of China under Grant No.40805041Chinese COPES Project under Grant No.GYHY200706005
文摘The effects of the physical process ensemble technique on simulation of summer precipitation over China have been studied by using a p-σregional climate model with 9 vertical levels(pσ-RCM9).The results show that there are obvious differences among simulations of summer precipitation over China from different individual ensemble members.The simulated precipitation over China is sensitive to different cumulus convection,radiative transfer,and land surface process parameterizations.These differences lead to large uncertainties in the simulation results.The standard deviation of the simulated summer precipitation departure percentage over West China is larger than that over East China,signifying that the simulated precipitation over East China has higher reliability and consistency than that over West China.The Talagr and diagram shows that the ensemble system has reasonable dispersion in the simulated summer mean precipitation over East China.The summer ensemble mean precipitation over East China evaluated by various indices is better than most single simulations.The physical process ensemble technique reduces the uncertainties of the model physics in precipitation and improves the simulation results as a whole.Further, adopting the optimized ensemble mean method can obviously improve the performance of the pσ-RCM9 model in simulation of summer precipitation over East China.
基金supported by the National Natural Science Foundation of China(Grant No.41501458)China Postdoctoral Science Foundation Funded Project(Grant No.2016M592860)+4 种基金National Basic Research Program of China(Grant No.2013CB733204)Key Laboratory of Mining Spatial Information Technology of NASMG(Grant Nos. KLM201309)Science Program of Shanghai Normal University(Grant No. SK201525)the Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development(Grant Nos.2013LASW-A09 & SKHL1310)the Center of Spatial Information Science and Sustainable Development Applications,Tongji University,Shanghai,China
文摘An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed.This study shows that such a simulation may be operated in real-time to highlight those areas that are highly prone to rainfall-induced landslides on the basis of the landslide susceptibility index and the rainfall intensity-duration(I-D) thresholds.First,the study on landslide susceptibility in China is introduced.The entire territory has been classified into five categories,among which high-susceptibility regions(Zone 4-'High' and 5-'Very high') account for 4.15%of the total extension of China.Second,rainfall is considered as an external triggering factor that may induce landslide initiation.Real-time satellite-based TMPA3B42 products may provide real rainfall spatial and temporal patterns,which may be used to derive rainfall duration time and intensity.By using a historical record of 60 significant past landslides,the rainfall I-D equation has been calibrated.The rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours.The combination of these two aspects can be exploited to simulate the spatiotemporal distribution of rainfall-induced landslide hazards when rainfall events exceed the rainfall I-D thresholds,where the susceptibility category is 'high' or 'very high'.This study shows a useful tool to be part of a systematic landslide simulation methodology,potentially providing useful information for a theoretical basis and practical guide for landslide prediction and mitigation throughout China.