期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
PRECISE ASYMPTOTICS IN THE BAUM-KATZ AND DAVIS LAW OF LARGE NUMBERS FOR POSITIVELY ASSOCIATED SEQUENCES 被引量:10
1
作者 MiChenjing 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第2期197-204,共8页
Let {X_i;i≥1} be a strictly stationary sequence of associated random variables with mean zero and let σ2=EX2_1+2∞_~j=2 EX_1X_j with 0<σ2<∞.Set S_n=n_~i=1 X_i,the precise asymptotics for _~n≥1 n^rp-2 P(|S_n... Let {X_i;i≥1} be a strictly stationary sequence of associated random variables with mean zero and let σ2=EX2_1+2∞_~j=2 EX_1X_j with 0<σ2<∞.Set S_n=n_~i=1 X_i,the precise asymptotics for _~n≥1 n^rp-2 P(|S_n|≥εn^1p ),_~n≥1 1nP(|S_n|≥εn^1p ) and _~n≥1 (log n)δnP(|S_n|≥εnlogn) as ε0 are established. 展开更多
关键词 complete convergence associated random variables Baum-Katz law precise asymptotics.
下载PDF
A general result on precise asymptotics for linear processes of positively associated sequences 被引量:10
2
作者 TAN Xi-li YANG Xiao-yun 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2008年第2期190-196,共7页
Let {εt; t ∈ Z^+} be a strictly stationary sequence of associated random variables with mean zeros, let 0〈Eε1^2〈∞ and σ^2=Eε1^2+1∑j=2^∞ Eε1εj with 0〈σ^2〈∞.{aj;j∈Z^+} is a sequence of real numbers s... Let {εt; t ∈ Z^+} be a strictly stationary sequence of associated random variables with mean zeros, let 0〈Eε1^2〈∞ and σ^2=Eε1^2+1∑j=2^∞ Eε1εj with 0〈σ^2〈∞.{aj;j∈Z^+} is a sequence of real numbers satisfying ∑j=0^∞|aj|〈∞.Define a linear process Xt=∑j=0^∞ ajεt-j,t≥1,and Sn=∑t=1^n Xt,n≥1.Assume that E|ε1|^2+δ′〈 for some δ′〉0 and μ(n)=O(n^-ρ) for some ρ〉0.This paper achieves a general law of precise asymptotics for {Sn}. 展开更多
关键词 PA sequence linear process general law precise asymptotics.
下载PDF
PRECISE ASYMPTOTICS IN SELF-NORMALIZED SUMS OF ITERATED LOGARITHM FOR MULTIDIMENSIONALLY INDEXED RANDOM VARIABLES 被引量:3
3
作者 Jiang Chaowei Yang Xiaorong 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2007年第1期87-94,共8页
In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑... In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑n1/|n|(log|n|dP(|Sn/Vn|≥ε√log log|n|) and ∑n(logn|)b/|n|(log|n|)^d-1P(|Sn/Vn|≥ε√log n),as ε↓0,is established. 展开更多
关键词 multidimensionally indexed random variable precise asymptotics self-normalized sum Davislaw of large numbers law of iterated logarithm.
下载PDF
Precise Asymptotics in the Law of Large Numbers and the Law of Iterated Logarithm of Moving-Average Process Generated by ALNQD Sequences
4
作者 张勇 赵世舜 董志山 《Northeastern Mathematical Journal》 CSCD 2007年第6期549-562,共14页
In this paper, we discuss the precise asymptotics of moving-average process Xt =∞∑j=0 ajEt-j under some suitable conditions, where {εt, t∈ Z} is a sequence j=0 of stationary ALNQD random variables with mean zeros... In this paper, we discuss the precise asymptotics of moving-average process Xt =∞∑j=0 ajEt-j under some suitable conditions, where {εt, t∈ Z} is a sequence j=0 of stationary ALNQD random variables with mean zeros and finite variances. 展开更多
关键词 ALNQD random variable moving-average process precise asymptotic2000 MR subject classification: 60F15
下载PDF
A General Law of Precise Asymptotics for the Complete Moment Convergence 被引量:17
5
作者 Yong ZHANG Xiaoyun YANG Zhishan DONG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第1期77-90,共14页
The authors achieve a general law of precise asymptotics for a new kind of complete moment convergence of i.i.d. random variables, which includes complete con- vergence as a special case. It can describe the relations... The authors achieve a general law of precise asymptotics for a new kind of complete moment convergence of i.i.d. random variables, which includes complete con- vergence as a special case. It can describe the relations among the boundary function, weighted function, convergence rate and limit value in studies of complete convergence. This extends and generalizes the corresponding results of Liu and Lin in 2006. 展开更多
关键词 Complete moment convergence General law precise asymptotics
原文传递
A General Law of Precise Asymptotics for Products of Sums under Dependence 被引量:6
6
作者 Yong ZHANG Xiao Yun YANG Zhi Shan DONG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第1期107-116,共10页
Let {Xn,n ≥ 1} be a strictly stationary LNQD (LPQD) sequence of positive random variables with EX1 = μ 〉 0, and VarX1 = σ^2 〈 ∞. Denote by Sn = ∑i=1^n Xi and γ = σ/μ the coefficients of variation. In this ... Let {Xn,n ≥ 1} be a strictly stationary LNQD (LPQD) sequence of positive random variables with EX1 = μ 〉 0, and VarX1 = σ^2 〈 ∞. Denote by Sn = ∑i=1^n Xi and γ = σ/μ the coefficients of variation. In this paper, under some suitable conditions, we show that a general law of precise asymptotics for products of sums holds. It can describe the relations among the boundary function, weighted function, convergence rate and limit value in the study of complete convergence. 展开更多
关键词 general law precise asymptotics products of sums NA (PA) LNQD (LPQD)
原文传递
The Precise Asymptotics of the Complete Convergence for Moving Average Processes of m-Dependent B-Valued Elements 被引量:5
7
作者 Xi Li TAN Xiao Yun YANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第3期467-480,共14页
Let {εt;t ∈ Z} be a sequence of m-dependent B-valued random elements with mean zeros and finite second moment. {a3;j ∈ Z} is a sequence of real numbers satisfying ∑j=-∞^∞|aj| 〈 ∞. Define a moving average pro... Let {εt;t ∈ Z} be a sequence of m-dependent B-valued random elements with mean zeros and finite second moment. {a3;j ∈ Z} is a sequence of real numbers satisfying ∑j=-∞^∞|aj| 〈 ∞. Define a moving average process Xt = ∑j=-∞^∞aj+tEj,t ≥ 1, and Sn = ∑t=1^n Xt,n ≥ 1. In this article, by using the weak convergence theorem of { Sn/√ n _〉 1}, we study the precise asymptotics of the complete convergence for the sequence {Xt; t ∈ N}. 展开更多
关键词 m-dependent random element moving average process complete convergence precise asymptotics
原文传递
Precise Asymptotics of Complete Moment Convergence on Moving Average 被引量:2
8
作者 Zheng Yan LIN Hui ZHOU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第12期2507-2526,共20页
Let {ζ,-co 〈 i 〈 ∞} be a doubly infinite sequence of identically distributed φ-mixing random variables with zero means and finite variances, {ai, -∞〈 i 〈 ∞} be an absolutely summable sequence of real numbers ... Let {ζ,-co 〈 i 〈 ∞} be a doubly infinite sequence of identically distributed φ-mixing random variables with zero means and finite variances, {ai, -∞〈 i 〈 ∞} be an absolutely summable sequence of real numbers and Xk = ∑+∞ i=-∞ ai{ζi+k be a moving average process. Under some proper moment conditions, the precise asymptotics are established for 展开更多
关键词 Moving-average process φ-mixing sequence complete convergence precise asymptotics
原文传递
Precise Asymptotics for Lévy Processes
9
作者 Zhi Shui HU Chun SU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第7期1265-1270,共6页
Let {X(t), t ≥ 0} be a Lévy process with EX(1) = 0 and EX^2(1) 〈 ∞. In this paper, we shall give two precise asymptotic theorems for {X(t), t 〉 0}. By the way, we prove the corresponding conclusions f... Let {X(t), t ≥ 0} be a Lévy process with EX(1) = 0 and EX^2(1) 〈 ∞. In this paper, we shall give two precise asymptotic theorems for {X(t), t 〉 0}. By the way, we prove the corresponding conclusions for strictly stable processes and a general precise asymptotic proposition for sums of i.i.d. random variables. 展开更多
关键词 precise asymptotic Lévy process stable process Fuk-Nagaev type inequality
原文传递
SOME LIMIT PROPERTIES OF LOCAL TIME FOR RANDOM WALK
10
作者 Wen Jiwei Yan Yunliang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第1期87-95,共9页
Let X,X1,X2 be i. i. d. random variables with EX^2+δ〈∞ (for some δ〉0). Consider a one dimensional random walk S={Sn}n≥0, starting from S0 =0. Let ζ* (n)=supx∈zζ(x,n),ζ(x,n) =#{0≤k≤n:[Sk]=x}. A s... Let X,X1,X2 be i. i. d. random variables with EX^2+δ〈∞ (for some δ〉0). Consider a one dimensional random walk S={Sn}n≥0, starting from S0 =0. Let ζ* (n)=supx∈zζ(x,n),ζ(x,n) =#{0≤k≤n:[Sk]=x}. A strong approximation of ζ(n) by the local time for Wiener process is presented and the limsup type and liminf-type laws of iterated logarithm of the maximum local time ζ*(n) are obtained. Furthermore,the precise asymptoties in the law of iterated logarithm of ζ*(n) is proved. 展开更多
关键词 local time random walk precise asymptotic law of iterated logarithm strong approximation.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部