The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which invo...The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which involves double-strand DNA breaks(DSBs),excels at gene disruption,it is less effective for accurate gene modification.The limitation arises because DSBs are primarily repaired via non-homologous end joining(NHEJ),which tends to introduce indels at the break site.While homology directed repair(HDR)can achieve precise editing when a donor DNA template is provided,the reliance on DSBs often results in unintended genome damage.HDR is restricted to specific cell cycle phases,limiting its application.Currently,gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR.The development of innovative systems,such as base editing,prime editing,and CRISPR-associated transposases(CASTs),now allow for precise editing ranging from single nucleotides to large DNA fragments.Base editors(BEs)enable the direct conversion of one nucleotide to another,and prime editors(PEs)further expand gene editing capabilities by allowing for the insertion,deletion,or alteration of small DNA fragments.The CAST system,a recent innovation,allows for the precise insertion of large DNA fragments at specific genomic locations.In recent years,the optimization of these precise gene editing tools has led to significant improvements in editing efficiency,specificity,and versatility,with advancements such as the creation of base editors for nucleotide transversions,enhanced prime editing systems for more efficient and precise modifications,and refined CAST systems for targeted large DNA insertions,expanding the range of applications for these tools.Concurrently,these advances are complemented by significant improvements in in vivo delivery methods,which have paved the way for therapeutic application of precise gene editing tools.Effective delivery systems are critical for the success of gene therapies,and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing.For instance,adeno-associated viruses(AAVs)are widely used due to their high transfection efficiency and low immunogenicity,though challenges such as limited cargo capacity and potential for immune responses remain.Non-viral delivery systems,including lipid nanoparticles(LNPs),offer an alternative with lower immunogenicity and higher payload capacity,although their transfection efficiency can be lower.The therapeutic potential of these precise gene editing technologies is vast,particularly in treating genetic disorders.Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy,liver disease,and hereditary hearing loss.These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions.Meanwhile,challenges remain,such as optimizing the safety and specificity of gene editing tools,improving delivery systems,and overcoming off-target effects,all of which are critical for their successful application in clinical settings.In summary,the continuous evolution of precise gene editing technologies,combined with advancements in delivery systems,is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes.展开更多
Single-nucleotide polymorphisms contribute to phenotypic diversity in maize. Creation and functional annotation of point mutations has been limited by the low efficiency of conventional methods based on random mutatio...Single-nucleotide polymorphisms contribute to phenotypic diversity in maize. Creation and functional annotation of point mutations has been limited by the low efficiency of conventional methods based on random mutation. An efficient tool for generating targeted single-base mutations is desirable for both functional genomics and precise genetic improvement. The objective of this study was to test the efficiency of targeted C-to-T base editing of two non-allelic acetolactate synthase(ALS) in generating sulfonylurea herbicide-resistant mutants. A CRISPR/Cas9 nickase-cytidine deaminase fused with uracil DNA glycosylase inhibitor(UGI) was employed to achieve targeted conversion of cytosine to thymine in ZmALS1 and ZmALS2. Both protoplasts and recovered mutant plants showed the activity of the cytosine base editor, with an in vivo efficiency of up to 13.8%. Transgene-free edited plants harboring a homozygous ZmALS1 mutation or a ZmALS1 and ZmALS2 double mutation were tested for their resistance at a dose of up to 15-fold the recommended limit of chlorsulfuron, a sulfonylurea herbicide widely used in agriculture. Targeted base editing of C-to-T per se and a phenotype verified in the generated mutants demonstrates the power of base editing in precise maize breeding.展开更多
Clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)-mediated genome editing has greatly accelerated progress in plant genetic research and agricultural breeding by enabling targe...Clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)-mediated genome editing has greatly accelerated progress in plant genetic research and agricultural breeding by enabling targeted genomic modifications.Moreover,the prime editing system,derived from the CRISPR/Cas system,has opened the door for even more precise genome editing.Prime editing has the capability to facilitate all 12 types of base-to-base conversions,as well as desired insertions or deletions of fragments,without inducing double-strand breaks and requiring donor DNA templet.In a short time,prime editing has been rapidly verified as functional in various plants,and can be used in plant genome functional analysis as well as precision breeding of crops.In this review,we summarize the emergence and development of prime editing,highlight recent advances in improving its efficiency in plants,introduce the current applications of prime editing in plants,and look forward to future prospects for utilizing prime editing in genetic improvement and precision molecular breeding.展开更多
Prime-editing systems have the capability to perform efficient and precise genome editing in human cells.In this study,we first developed a plant prime editor 2(pPE2)system and test its activity by generating a target...Prime-editing systems have the capability to perform efficient and precise genome editing in human cells.In this study,we first developed a plant prime editor 2(pPE2)system and test its activity by generating a targeted mutation on an HPT^(-ATG) reporter in rice.Our results showed that the pPE2 system could induce programmable editing at different genome sites.In transgenic T0 plants,pPE2-generated mutants occurred with 0%–31.3%frequency,suggesting that the efficiency of pPE2 varied greatly at different genomic sites and with prime-editing guide RNAs of diverse structures.To optimize editing efficiency,guide RNAs were introduced into the pPE2 system following the PE3 and PE3b strategy in human cells.However,at the genomic sites tested in this study,pPE3 systems generated only comparable or even lower editing frequencies.Furthemore,we developed a surrogate pPE2 system by incorporating the HPT^(-ATG) reporter to enrich the prime-edited cells.The nucleotide editing was easily detected in the resistant calli transformed with the surrogate pPE2 system,presumably due to the enhanced screening efficiency of edited cells.Taken together,our results indicate that plant prime-editing systems we developed could provide versatile and flexible editing in rice genome.展开更多
Precise replacement of an allele with an elite allele controlling an important agronomic trait in a predefined manner by gene editing technologies is highly desirable in crop improvement.Base editing and prime editing...Precise replacement of an allele with an elite allele controlling an important agronomic trait in a predefined manner by gene editing technologies is highly desirable in crop improvement.Base editing and prime editing are two newly developed precision gene editing systems which can introduce the substitution of a single base and install the desired short indels to the target loci in the absence of double-strand breaks and donor repair templates,respectively.Since their discoveries,various strategies have been attempted to optimize both base editor(BE)and prime editor(PE)in order to improve the precise editing efficacy,specificity,and expand the targeting scopes.Here,we summarize the latest development of various BEs and PEs,as well as their applications in plants.Based on these progresses,we recommend the appropriate BEs and PEs for both basic plant research and crop improvement.Moreover,we propose the perspectives for further optimization of these two editors.We envision that both BEs and PEs will become the routine and customized precise gene editing tools for both plant biological research and crop improvement in the near future.展开更多
Clustered regularly interspaced short palindromic repeats(CRISPR)technology emerges a remarkable potential for cure of refractory cancer like metastatic breast cancer.However,how to efficiently deliver the CRISPR syst...Clustered regularly interspaced short palindromic repeats(CRISPR)technology emerges a remarkable potential for cure of refractory cancer like metastatic breast cancer.However,how to efficiently deliver the CRISPR system with non-viral carrier remains a major issue to be solved.Here,we report a kind of targeted core-shell nanoparticles(NPs)carrying dual plasmids(pHR-pCas9)for precise CCCTC-binding factor(CTCF)gene insert to circumvent metastatic breast cancer.The targeted core-shell NPs carrying pHR-pCas9 can accomplishγGTP-mediated cellular uptake and endosomal escape,facilitate the precise insert and stable expression of CTCF gene,inhibit the migration,metastasis,and colonization of metastatic breast cancer cells.Besides,the finding further reveals that the inhibitory mechanism of metastasis could be associated with up-regulating CTCF protein,followed by down-regulating stomatin(STOM)protein.The study offers a universal nanostrategy enabling the robust non-viral delivery of gene-editing system for treatment of severe illness.展开更多
Common wheat(Triticum aestivum)is one of the most widely cultivated and consumed crops globally.In the face of limited arable land and climate changes,it is a great challenge to maintain current and increase future wh...Common wheat(Triticum aestivum)is one of the most widely cultivated and consumed crops globally.In the face of limited arable land and climate changes,it is a great challenge to maintain current and increase future wheat production.Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition.However,clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associ-ated nuclease(Cas)genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species,thereby opening up new possibilities for biotechnology and breeding.In this review,we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat,emphasizing recent breakthroughs in precise and multiplex genome editing.We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells.Furthermore,we summarize the recent applications and ad-vancements of CRISPR/Cas technologies for wheat improvement.Lastly,we discuss the remaining chal-lenges specific to wheat genome editing and its future prospects.展开更多
Brassica species are a global source of nutrients and edible vegetable oil for humans.However,all commercially important Brassica crops underwent a whole-genome triplication event,hindering the development of function...Brassica species are a global source of nutrients and edible vegetable oil for humans.However,all commercially important Brassica crops underwent a whole-genome triplication event,hindering the development of functional genomics and breeding programs.Fortunately,clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associated(Cas)technologies,by allowing multiplex and precise genome engineering,have become valuable genome-editing tools and opened up new avenues for biotechnology.Here,we review current progress in the use of CRISPR/Cas technologies with an emphasis on the latest breakthroughs in precise genome editing.We also summarize the application of CRISPR/Cas technologies to Brassica crops for trait improvements.Finally,we discuss the challenges and future directions of these technologies for comprehensive application in Brassica crops.Ongoing advancement in CRISPR/Cas technologies,in combination with other achievements,will play a significant role in the genetic improvement and molecular breeding of Brassica crops.展开更多
文摘The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which involves double-strand DNA breaks(DSBs),excels at gene disruption,it is less effective for accurate gene modification.The limitation arises because DSBs are primarily repaired via non-homologous end joining(NHEJ),which tends to introduce indels at the break site.While homology directed repair(HDR)can achieve precise editing when a donor DNA template is provided,the reliance on DSBs often results in unintended genome damage.HDR is restricted to specific cell cycle phases,limiting its application.Currently,gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR.The development of innovative systems,such as base editing,prime editing,and CRISPR-associated transposases(CASTs),now allow for precise editing ranging from single nucleotides to large DNA fragments.Base editors(BEs)enable the direct conversion of one nucleotide to another,and prime editors(PEs)further expand gene editing capabilities by allowing for the insertion,deletion,or alteration of small DNA fragments.The CAST system,a recent innovation,allows for the precise insertion of large DNA fragments at specific genomic locations.In recent years,the optimization of these precise gene editing tools has led to significant improvements in editing efficiency,specificity,and versatility,with advancements such as the creation of base editors for nucleotide transversions,enhanced prime editing systems for more efficient and precise modifications,and refined CAST systems for targeted large DNA insertions,expanding the range of applications for these tools.Concurrently,these advances are complemented by significant improvements in in vivo delivery methods,which have paved the way for therapeutic application of precise gene editing tools.Effective delivery systems are critical for the success of gene therapies,and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing.For instance,adeno-associated viruses(AAVs)are widely used due to their high transfection efficiency and low immunogenicity,though challenges such as limited cargo capacity and potential for immune responses remain.Non-viral delivery systems,including lipid nanoparticles(LNPs),offer an alternative with lower immunogenicity and higher payload capacity,although their transfection efficiency can be lower.The therapeutic potential of these precise gene editing technologies is vast,particularly in treating genetic disorders.Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy,liver disease,and hereditary hearing loss.These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions.Meanwhile,challenges remain,such as optimizing the safety and specificity of gene editing tools,improving delivery systems,and overcoming off-target effects,all of which are critical for their successful application in clinical settings.In summary,the continuous evolution of precise gene editing technologies,combined with advancements in delivery systems,is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes.
基金supported by the Key Area Research and Development Program of Guangdong Province(2018B020202008)the National Natural Science Foundation of China(31771808)+2 种基金Beijing Municipal Science and Technology Project(D171100007717001)the National Key Research and Development Program of China(2016YFD0101803)National Engineering Laboratory for Crop Molecular Breeding。
文摘Single-nucleotide polymorphisms contribute to phenotypic diversity in maize. Creation and functional annotation of point mutations has been limited by the low efficiency of conventional methods based on random mutation. An efficient tool for generating targeted single-base mutations is desirable for both functional genomics and precise genetic improvement. The objective of this study was to test the efficiency of targeted C-to-T base editing of two non-allelic acetolactate synthase(ALS) in generating sulfonylurea herbicide-resistant mutants. A CRISPR/Cas9 nickase-cytidine deaminase fused with uracil DNA glycosylase inhibitor(UGI) was employed to achieve targeted conversion of cytosine to thymine in ZmALS1 and ZmALS2. Both protoplasts and recovered mutant plants showed the activity of the cytosine base editor, with an in vivo efficiency of up to 13.8%. Transgene-free edited plants harboring a homozygous ZmALS1 mutation or a ZmALS1 and ZmALS2 double mutation were tested for their resistance at a dose of up to 15-fold the recommended limit of chlorsulfuron, a sulfonylurea herbicide widely used in agriculture. Targeted base editing of C-to-T per se and a phenotype verified in the generated mutants demonstrates the power of base editing in precise maize breeding.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3400200)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(Grant No.CAAS-ZDRW202001)the Earmarked Fund for China Agriculture Research System(Grant No.CARS-01-07).
文摘Clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)-mediated genome editing has greatly accelerated progress in plant genetic research and agricultural breeding by enabling targeted genomic modifications.Moreover,the prime editing system,derived from the CRISPR/Cas system,has opened the door for even more precise genome editing.Prime editing has the capability to facilitate all 12 types of base-to-base conversions,as well as desired insertions or deletions of fragments,without inducing double-strand breaks and requiring donor DNA templet.In a short time,prime editing has been rapidly verified as functional in various plants,and can be used in plant genome functional analysis as well as precision breeding of crops.In this review,we summarize the emergence and development of prime editing,highlight recent advances in improving its efficiency in plants,introduce the current applications of prime editing in plants,and look forward to future prospects for utilizing prime editing in genetic improvement and precision molecular breeding.
基金funded by the Genetically Modified Breeding Major Projects(no.2019ZX08010003-001-008 and no.2016ZX08010-002-008)the National Natural Science Foundation of China(no.U19A2022).
文摘Prime-editing systems have the capability to perform efficient and precise genome editing in human cells.In this study,we first developed a plant prime editor 2(pPE2)system and test its activity by generating a targeted mutation on an HPT^(-ATG) reporter in rice.Our results showed that the pPE2 system could induce programmable editing at different genome sites.In transgenic T0 plants,pPE2-generated mutants occurred with 0%–31.3%frequency,suggesting that the efficiency of pPE2 varied greatly at different genomic sites and with prime-editing guide RNAs of diverse structures.To optimize editing efficiency,guide RNAs were introduced into the pPE2 system following the PE3 and PE3b strategy in human cells.However,at the genomic sites tested in this study,pPE3 systems generated only comparable or even lower editing frequencies.Furthemore,we developed a surrogate pPE2 system by incorporating the HPT^(-ATG) reporter to enrich the prime-edited cells.The nucleotide editing was easily detected in the resistant calli transformed with the surrogate pPE2 system,presumably due to the enhanced screening efficiency of edited cells.Taken together,our results indicate that plant prime-editing systems we developed could provide versatile and flexible editing in rice genome.
基金funded by National Key Research and Development Program of China(2021YFF1000204)Nanfan Special Project,CAAS(ZDXM03)+1 种基金Hainan Yazhou Bay Seed Lab(B21HJ0215,B21Y10205)Key Laboratory of Gene Editing Technologies(Hainan),Ministry of Agriculture and Rural Affairs,China。
文摘Precise replacement of an allele with an elite allele controlling an important agronomic trait in a predefined manner by gene editing technologies is highly desirable in crop improvement.Base editing and prime editing are two newly developed precision gene editing systems which can introduce the substitution of a single base and install the desired short indels to the target loci in the absence of double-strand breaks and donor repair templates,respectively.Since their discoveries,various strategies have been attempted to optimize both base editor(BE)and prime editor(PE)in order to improve the precise editing efficacy,specificity,and expand the targeting scopes.Here,we summarize the latest development of various BEs and PEs,as well as their applications in plants.Based on these progresses,we recommend the appropriate BEs and PEs for both basic plant research and crop improvement.Moreover,we propose the perspectives for further optimization of these two editors.We envision that both BEs and PEs will become the routine and customized precise gene editing tools for both plant biological research and crop improvement in the near future.
基金supported by the Natural Science Foundation of Beijing Municipality(Key Grant No.7181004)the National Natural Science Foundation of China(No.81874303).
文摘Clustered regularly interspaced short palindromic repeats(CRISPR)technology emerges a remarkable potential for cure of refractory cancer like metastatic breast cancer.However,how to efficiently deliver the CRISPR system with non-viral carrier remains a major issue to be solved.Here,we report a kind of targeted core-shell nanoparticles(NPs)carrying dual plasmids(pHR-pCas9)for precise CCCTC-binding factor(CTCF)gene insert to circumvent metastatic breast cancer.The targeted core-shell NPs carrying pHR-pCas9 can accomplishγGTP-mediated cellular uptake and endosomal escape,facilitate the precise insert and stable expression of CTCF gene,inhibit the migration,metastasis,and colonization of metastatic breast cancer cells.Besides,the finding further reveals that the inhibitory mechanism of metastasis could be associated with up-regulating CTCF protein,followed by down-regulating stomatin(STOM)protein.The study offers a universal nanostrategy enabling the robust non-viral delivery of gene-editing system for treatment of severe illness.
基金supported by grants from the National Key Research and Development Program of China(No.2021YFF1000800)the Frontiers Science Center for Molecular Design Breeding(No.2022TC152)+1 种基金the Hainan Yazhou Bay Seed Laboratory(No.B21HJ0504)China Agricultural University Start-up Funding.
文摘Common wheat(Triticum aestivum)is one of the most widely cultivated and consumed crops globally.In the face of limited arable land and climate changes,it is a great challenge to maintain current and increase future wheat production.Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition.However,clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associ-ated nuclease(Cas)genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species,thereby opening up new possibilities for biotechnology and breeding.In this review,we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat,emphasizing recent breakthroughs in precise and multiplex genome editing.We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells.Furthermore,we summarize the recent applications and ad-vancements of CRISPR/Cas technologies for wheat improvement.Lastly,we discuss the remaining chal-lenges specific to wheat genome editing and its future prospects.
基金supported by the Key Research and Development Program of Hebei(21372901D,216Z2904G,21326344D)Hebei Provincial Natural Science Foundation for Excellent Young Scholar(C2020204062)+3 种基金Hebei Innovative Research_Group,Project(C202020411)Program for Young Talents of Hebei Education Department(BJ2021025)International Science and Technology Cooperation base Special Project of Hebei(20592901D)Starting Grant from Hebei Agricultural University(YJ201958).
文摘Brassica species are a global source of nutrients and edible vegetable oil for humans.However,all commercially important Brassica crops underwent a whole-genome triplication event,hindering the development of functional genomics and breeding programs.Fortunately,clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associated(Cas)technologies,by allowing multiplex and precise genome engineering,have become valuable genome-editing tools and opened up new avenues for biotechnology.Here,we review current progress in the use of CRISPR/Cas technologies with an emphasis on the latest breakthroughs in precise genome editing.We also summarize the application of CRISPR/Cas technologies to Brassica crops for trait improvements.Finally,we discuss the challenges and future directions of these technologies for comprehensive application in Brassica crops.Ongoing advancement in CRISPR/Cas technologies,in combination with other achievements,will play a significant role in the genetic improvement and molecular breeding of Brassica crops.