The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which invo...The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which involves double-strand DNA breaks(DSBs),excels at gene disruption,it is less effective for accurate gene modification.The limitation arises because DSBs are primarily repaired via non-homologous end joining(NHEJ),which tends to introduce indels at the break site.While homology directed repair(HDR)can achieve precise editing when a donor DNA template is provided,the reliance on DSBs often results in unintended genome damage.HDR is restricted to specific cell cycle phases,limiting its application.Currently,gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR.The development of innovative systems,such as base editing,prime editing,and CRISPR-associated transposases(CASTs),now allow for precise editing ranging from single nucleotides to large DNA fragments.Base editors(BEs)enable the direct conversion of one nucleotide to another,and prime editors(PEs)further expand gene editing capabilities by allowing for the insertion,deletion,or alteration of small DNA fragments.The CAST system,a recent innovation,allows for the precise insertion of large DNA fragments at specific genomic locations.In recent years,the optimization of these precise gene editing tools has led to significant improvements in editing efficiency,specificity,and versatility,with advancements such as the creation of base editors for nucleotide transversions,enhanced prime editing systems for more efficient and precise modifications,and refined CAST systems for targeted large DNA insertions,expanding the range of applications for these tools.Concurrently,these advances are complemented by significant improvements in in vivo delivery methods,which have paved the way for therapeutic application of precise gene editing tools.Effective delivery systems are critical for the success of gene therapies,and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing.For instance,adeno-associated viruses(AAVs)are widely used due to their high transfection efficiency and low immunogenicity,though challenges such as limited cargo capacity and potential for immune responses remain.Non-viral delivery systems,including lipid nanoparticles(LNPs),offer an alternative with lower immunogenicity and higher payload capacity,although their transfection efficiency can be lower.The therapeutic potential of these precise gene editing technologies is vast,particularly in treating genetic disorders.Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy,liver disease,and hereditary hearing loss.These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions.Meanwhile,challenges remain,such as optimizing the safety and specificity of gene editing tools,improving delivery systems,and overcoming off-target effects,all of which are critical for their successful application in clinical settings.In summary,the continuous evolution of precise gene editing technologies,combined with advancements in delivery systems,is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes.展开更多
Single-nucleotide polymorphisms contribute to phenotypic diversity in maize. Creation and functional annotation of point mutations has been limited by the low efficiency of conventional methods based on random mutatio...Single-nucleotide polymorphisms contribute to phenotypic diversity in maize. Creation and functional annotation of point mutations has been limited by the low efficiency of conventional methods based on random mutation. An efficient tool for generating targeted single-base mutations is desirable for both functional genomics and precise genetic improvement. The objective of this study was to test the efficiency of targeted C-to-T base editing of two non-allelic acetolactate synthase(ALS) in generating sulfonylurea herbicide-resistant mutants. A CRISPR/Cas9 nickase-cytidine deaminase fused with uracil DNA glycosylase inhibitor(UGI) was employed to achieve targeted conversion of cytosine to thymine in ZmALS1 and ZmALS2. Both protoplasts and recovered mutant plants showed the activity of the cytosine base editor, with an in vivo efficiency of up to 13.8%. Transgene-free edited plants harboring a homozygous ZmALS1 mutation or a ZmALS1 and ZmALS2 double mutation were tested for their resistance at a dose of up to 15-fold the recommended limit of chlorsulfuron, a sulfonylurea herbicide widely used in agriculture. Targeted base editing of C-to-T per se and a phenotype verified in the generated mutants demonstrates the power of base editing in precise maize breeding.展开更多
Clustered regularly interspaced short palindromic repeats(CRISPR)technology emerges a remarkable potential for cure of refractory cancer like metastatic breast cancer.However,how to efficiently deliver the CRISPR syst...Clustered regularly interspaced short palindromic repeats(CRISPR)technology emerges a remarkable potential for cure of refractory cancer like metastatic breast cancer.However,how to efficiently deliver the CRISPR system with non-viral carrier remains a major issue to be solved.Here,we report a kind of targeted core-shell nanoparticles(NPs)carrying dual plasmids(pHR-pCas9)for precise CCCTC-binding factor(CTCF)gene insert to circumvent metastatic breast cancer.The targeted core-shell NPs carrying pHR-pCas9 can accomplishγGTP-mediated cellular uptake and endosomal escape,facilitate the precise insert and stable expression of CTCF gene,inhibit the migration,metastasis,and colonization of metastatic breast cancer cells.Besides,the finding further reveals that the inhibitory mechanism of metastasis could be associated with up-regulating CTCF protein,followed by down-regulating stomatin(STOM)protein.The study offers a universal nanostrategy enabling the robust non-viral delivery of gene-editing system for treatment of severe illness.展开更多
文摘The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which involves double-strand DNA breaks(DSBs),excels at gene disruption,it is less effective for accurate gene modification.The limitation arises because DSBs are primarily repaired via non-homologous end joining(NHEJ),which tends to introduce indels at the break site.While homology directed repair(HDR)can achieve precise editing when a donor DNA template is provided,the reliance on DSBs often results in unintended genome damage.HDR is restricted to specific cell cycle phases,limiting its application.Currently,gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR.The development of innovative systems,such as base editing,prime editing,and CRISPR-associated transposases(CASTs),now allow for precise editing ranging from single nucleotides to large DNA fragments.Base editors(BEs)enable the direct conversion of one nucleotide to another,and prime editors(PEs)further expand gene editing capabilities by allowing for the insertion,deletion,or alteration of small DNA fragments.The CAST system,a recent innovation,allows for the precise insertion of large DNA fragments at specific genomic locations.In recent years,the optimization of these precise gene editing tools has led to significant improvements in editing efficiency,specificity,and versatility,with advancements such as the creation of base editors for nucleotide transversions,enhanced prime editing systems for more efficient and precise modifications,and refined CAST systems for targeted large DNA insertions,expanding the range of applications for these tools.Concurrently,these advances are complemented by significant improvements in in vivo delivery methods,which have paved the way for therapeutic application of precise gene editing tools.Effective delivery systems are critical for the success of gene therapies,and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing.For instance,adeno-associated viruses(AAVs)are widely used due to their high transfection efficiency and low immunogenicity,though challenges such as limited cargo capacity and potential for immune responses remain.Non-viral delivery systems,including lipid nanoparticles(LNPs),offer an alternative with lower immunogenicity and higher payload capacity,although their transfection efficiency can be lower.The therapeutic potential of these precise gene editing technologies is vast,particularly in treating genetic disorders.Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy,liver disease,and hereditary hearing loss.These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions.Meanwhile,challenges remain,such as optimizing the safety and specificity of gene editing tools,improving delivery systems,and overcoming off-target effects,all of which are critical for their successful application in clinical settings.In summary,the continuous evolution of precise gene editing technologies,combined with advancements in delivery systems,is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes.
基金supported by the Key Area Research and Development Program of Guangdong Province(2018B020202008)the National Natural Science Foundation of China(31771808)+2 种基金Beijing Municipal Science and Technology Project(D171100007717001)the National Key Research and Development Program of China(2016YFD0101803)National Engineering Laboratory for Crop Molecular Breeding。
文摘Single-nucleotide polymorphisms contribute to phenotypic diversity in maize. Creation and functional annotation of point mutations has been limited by the low efficiency of conventional methods based on random mutation. An efficient tool for generating targeted single-base mutations is desirable for both functional genomics and precise genetic improvement. The objective of this study was to test the efficiency of targeted C-to-T base editing of two non-allelic acetolactate synthase(ALS) in generating sulfonylurea herbicide-resistant mutants. A CRISPR/Cas9 nickase-cytidine deaminase fused with uracil DNA glycosylase inhibitor(UGI) was employed to achieve targeted conversion of cytosine to thymine in ZmALS1 and ZmALS2. Both protoplasts and recovered mutant plants showed the activity of the cytosine base editor, with an in vivo efficiency of up to 13.8%. Transgene-free edited plants harboring a homozygous ZmALS1 mutation or a ZmALS1 and ZmALS2 double mutation were tested for their resistance at a dose of up to 15-fold the recommended limit of chlorsulfuron, a sulfonylurea herbicide widely used in agriculture. Targeted base editing of C-to-T per se and a phenotype verified in the generated mutants demonstrates the power of base editing in precise maize breeding.
基金supported by the Natural Science Foundation of Beijing Municipality(Key Grant No.7181004)the National Natural Science Foundation of China(No.81874303).
文摘Clustered regularly interspaced short palindromic repeats(CRISPR)technology emerges a remarkable potential for cure of refractory cancer like metastatic breast cancer.However,how to efficiently deliver the CRISPR system with non-viral carrier remains a major issue to be solved.Here,we report a kind of targeted core-shell nanoparticles(NPs)carrying dual plasmids(pHR-pCas9)for precise CCCTC-binding factor(CTCF)gene insert to circumvent metastatic breast cancer.The targeted core-shell NPs carrying pHR-pCas9 can accomplishγGTP-mediated cellular uptake and endosomal escape,facilitate the precise insert and stable expression of CTCF gene,inhibit the migration,metastasis,and colonization of metastatic breast cancer cells.Besides,the finding further reveals that the inhibitory mechanism of metastasis could be associated with up-regulating CTCF protein,followed by down-regulating stomatin(STOM)protein.The study offers a universal nanostrategy enabling the robust non-viral delivery of gene-editing system for treatment of severe illness.